Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Coll Cardiol ; 84(12): 1092-1103, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39260931

RESUMO

BACKGROUND: B-type natriuretic peptide or N-terminal pro-B-type natriuretic peptide is the only blood biomarker in established risk calculators for pulmonary arterial hypertension (PAH). Profiling systemic-originated plasma immunoglobulin G (IgG) N-glycans, which reflect different components of the pathophysiology of PAH including immune dysregulation and inflammation, may improve PAH risk assessment. OBJECTIVES: This study sought to identify plasma IgG N-glycan biomarkers that predict survival in PAH to improve risk assessment. METHODS: This cohort study examined 622 PAH patients from 2 national centers (Beijing [discovery] cohort: n = 273; Shanghai [validation] cohort: n = 349). Plasma IgG N-glycomes were profiled by a robust mass spectrometry-based method. Prognostic IgG N-glycan traits were identified and validated in the 2 cohorts using Cox regression and Kaplan-Meier survival analyses. The added value of IgG N-glycan traits to previously established risk models was assessed using Harrell C-indexes and survival analysis. RESULTS: Plasma IgG fucosylation was found to predict survival independent of age and sex in the discovery cohort (HR: 0.377; 95% CI: 0.168-0.845; P = 0.018) with confirmation in the validation cohort (HR: 0.445; 95% CI: 0.264-0.751; P = 0.005). IgG fucosylation remained a robust predictor of mortality in combined cohorts after full adjustment and in subgroup analyses. Integrating IgG fucosylation into previously established risk models improved their predictive capacity, marked by an overall elevation in Harrell C-indexes. IgG fucosylation was useful in further stratifying the intermediate-risk patients classified by a previously established model. CONCLUSIONS: Plasma IgG fucosylation informs PAH prognosis independent of established factors, offering additional value for predicting PAH outcomes.


Assuntos
Biomarcadores , Imunoglobulina G , Humanos , Feminino , Masculino , Imunoglobulina G/sangue , Pessoa de Meia-Idade , Prognóstico , Biomarcadores/sangue , Adulto , Hipertensão Arterial Pulmonar/sangue , Hipertensão Arterial Pulmonar/mortalidade , Estudos de Coortes , Polissacarídeos/sangue , Idoso , Medição de Risco/métodos , China/epidemiologia
2.
Eur J Pharmacol ; 970: 176492, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38503401

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive vascular disease characterized by remodeling of the pulmonary vasculature and elevated pulmonary arterial pressure, ultimately leading to right heart failure and death. Despite its clinical significance, the precise molecular mechanisms driving PAH pathogenesis warrant confirmation. Compelling evidence indicates that during the development of PAH, pulmonary vascular cells exhibit a preference for energy generation through aerobic glycolysis, known as the "Warburg effect", even in well-oxygenated conditions. This metabolic shift results in imbalanced metabolism, increased proliferation, and severe pulmonary vascular remodeling. Exploring the Warburg effect and its interplay with glycolytic enzymes in the context of PAH has yielded current insights into emerging drug candidates targeting enzymes and intermediates involved in glucose metabolism. This sheds light on both opportunities and challenges in the realm of antiglycolytic therapy for PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Pulmonar Primária Familiar , Glicólise , Pulmão/metabolismo , Artéria Pulmonar/metabolismo , Remodelação Vascular
3.
Hypertension ; 81(2): 372-382, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38116660

RESUMO

BACKGROUND: The pathogenesis of chronic thromboembolic pulmonary hypertension (CTEPH) is multifactorial and growing evidence has indicated that hematological disorders are involved. Clonal hematopoiesis of indeterminate potential (CHIP) has recently been associated with an increased risk of both hematological malignancies and cardiovascular diseases. However, the prevalence and clinical relevance of CHIP in patients with CTEPH remains unclear. METHODS: Using stepwise calling on next-generation sequencing data from 499 patients with CTEPH referred to 3 centers between October 2006 and December 2021, CHIP mutations were identified. We associated CHIP with all-cause mortality in patients with CTEPH. To provide insights into potential mechanisms, the associations between CHIP and inflammatory markers were also determined. RESULTS: In total, 47 (9.4%) patients with CTEPH carried at least 1 CHIP mutation at a variant allele frequency of ≥2%. The most common mutations were in DNMT3A, TET2, RUNX1, and ASXL1. During follow-up (mean, 55 months), deaths occurred in 22 (46.8%) and 104 (23.0%) patients in the CHIP and non-CHIP groups, respectively (P<0.001, log-rank test). The association of CHIP with mortality remained robust in the fully adjusted model (hazard ratio, 2.190 [95% CI, 1.257-3.816]; P=0.006). Moreover, patients with CHIP mutations showed higher circulating interleukin-1ß and interleukin-6 and lower interleukin-4 and IgG galactosylation levels. CONCLUSIONS: This is the first study to show that CHIP mutations occurred in 9.4% of patients with CTEPH are associated with a severe inflammatory state and confer a poorer prognosis in long-term follow-up.


Assuntos
Doenças Cardiovasculares , Hipertensão Pulmonar , Humanos , Hematopoiese Clonal , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Hematopoese/genética , Doenças Cardiovasculares/genética , Mutação
4.
Vascul Pharmacol ; 153: 107216, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37699495

RESUMO

Pulmonary arterial hypertension (PAH) is a complex and progressive disease characterized by pulmonary arterial remodeling. Despite that current combination therapy has shown improvement in morbidity and mortality, a better deciphering of the underlying pathological mechanisms and novel therapeutic targets is urgently needed to combat PAH. MicroRNA, the critical element in post-transcription mechanisms, mediates cellular functions mainly by tuning downstream target gene expression. Meanwhile, upstream regulators can regulate miRNAs in synthesis, transcription, and function. In vivo and in vitro studies have suggested that miRNAs and their regulators are involved in PAH. However, the miRNA-related regulatory mechanisms governing pulmonary vascular remodeling and right ventricular dysfunction remain elusive. Hence, this review summarized the controversial roles of miRNAs in PAH pathogenesis, focused on different miRNA-upstream regulators, including transcription factors, regulatory networks, and environmental stimuli, and finally proposed the prospects and challenges for the therapeutic application of miRNAs and their regulators in PAH treatment.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Hipertensão Arterial Pulmonar , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/genética , Pulmão/patologia , Fatores de Transcrição/metabolismo , Remodelação Vascular , Artéria Pulmonar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA