Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Anal Chem ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728223

RESUMO

Detection of endogenous peptides, especially those with modifications (such as phosphorylation) in biofluids, can serve as an indicator of intracellular pathophysiology. Although great progress has been made in phosphoproteomics in recent years, endogenous phosphopeptidomics has largely lagged behind. One main hurdle in endogenous phosphopeptidomics analysis is the coexistence of proteins and highly abundant nonmodified peptides in complex matrices. In this study, we developed an approach using zirconium(IV)-grafted mesoporous beads to enrich phosphopeptides, followed by analysis with a high resolution nanoRPLC-MS/MS system. The bifunctional material was first tested with digests of standard phosphoproteins and HeLa cell lysates, with excellent enrichment performance achieved. Given the size exclusion nature, the beads were directly applied for endogenous phosphopeptidomic analysis of serum samples from pancreatic ductal adenocarcinoma (PDAC) patients and controls. In total, 329 endogenous phosphopeptides (containing 113 high confidence sites) were identified across samples, by far the largest endogenous phosphopeptide data set cataloged to date. In addition, the method was readily applied for phosphoproteomics of the same set of samples, with 172 phosphopeptides identified and significant changes in dozens of phosphopeptides observed. Given the simplicity and robustness of the proposed method, we envision that it can be readily used for comprehensive phosphorylation studies of serum and other biofluid samples.

2.
ISA Trans ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38702204

RESUMO

This paper proposes a tube-based model predictive control strategy for linear systems with bounded disturbances and input delay to ensure input-to-state stability. Firstly, the actual disturbed system is decomposed into a nominal system without disturbances and an error system. For the nominal system, solving an optimization problem, where the delayed control input is set as an optimization variable, yields a nominal control law that enables the nominal state signal to approach to zero. Then, for the error system, the Razumikhin approach is used to identify a robust control invariant set. Using the set invariance theorem, an ancillary control law is developed to confine the error state signal in the invariant set. Combining the two results, we obtain a control law that enables the state signal to remain within a robustly invariant tube. Finally, the effectiveness of the developed control strategy is validated by simulations.

3.
Cell Discov ; 10(1): 47, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704363

RESUMO

Neutrophils are the most abundant immune cells that first respond to insults in circulation. Although associative evidence suggests that differences in neutrophils may be linked to the sex-specific vulnerability of inflammatory diseases, mechanistic links remain elusive. Here, we identified extensive sex-specific heterogeneity in neutrophil composition under normal and auto-inflammatory conditions at single-cell resolution. Using a combination of single-cell RNA sequencing analysis, neutrophil-specific genetic knockouts and transfer experiments, we discovered dysregulation of two unconventional (interferon-α responsive and T cell regulatory) neutrophil subsets leading to male-biased incidence, severity and poor prognosis of auto-inflammatory Behçet's uveitis. Genome-wide association study (GWAS) and exosome study revealed that male-specific negative effects of both genetic factors and circulating exosomes on unconventional neutrophil subsets contributed to male-specific vulnerability to disease. Collectively, our findings identify sex-specifically distinct neutrophil subsets and highlight unconventional neutrophil subsets as sex-specific therapeutic targets to limit inflammatory diseases.

4.
Insights Imaging ; 15(1): 55, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411752

RESUMO

Coronary chronic total occlusion (CTO) often occurs in patients with obstructive coronary artery disease, which remains one of the greatest challenges for interventional cardiologists. Coronary computed tomography angiography (CCTA) with its emerging post-processing techniques can provide a detailed assessment of CTO lesions before percutaneous coronary intervention (PCI), playing an important role in the clinical management of CTO PCI, from early diagnosis, pre-procedural outcome prediction, the crossing algorithm planning, intraprocedural guidance, and finally post-procedural assessment and follow-up. In addition, the feasibility of CT perfusion (CTP) in patients with CTO has been validated. Combined CCTA and CTP have the great potential to be the one-stop-shop imaging modality for assessing both anatomy and function of CTO lesions. This review aims to make radiologists understand the role of CCTA in the diagnosis and assessment of CTO lesions, thus assisting interventionalists in optimizing CTO PCI crossing strategies with the expertise of radiologists.Critical relevance statement The anatomical features of CTO on CCTA can reveal the complexity of CTO lesions and are associated with CTO PCI outcome, thus helping interventionalists optimize CTO PCI crossing strategies.Key points • CTO is the common lesion in invasive coronary angiography, and CTO PCI is technically difficult and its success rate is relatively low.• Length, collaterals, and attenuation-related signs can help distinguish CTO from subtotal occlusion.• The anatomical features of CTO lesions can help grade the difficulty of CTO PCI and predict procedural outcomes and long-term outcomes of CTO PCI.• The real-time fusion of CCTA with fluoroscopic angiography can be applied in highly complicated CTO lesions.• After CTO PCI, CCTA can help guide a second CTO PCI re-entry or follow up stent patency.

6.
Nat Chem Biol ; 20(1): 19-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37308732

RESUMO

O-linked ß-N-acetyl glucosamine (O-GlcNAc) is at the crossroads of cellular metabolism, including glucose and glutamine; its dysregulation leads to molecular and pathological alterations that cause diseases. Here we report that O-GlcNAc directly regulates de novo nucleotide synthesis and nicotinamide adenine dinucleotide (NAD) production upon abnormal metabolic states. Phosphoribosyl pyrophosphate synthetase 1 (PRPS1), the key enzyme of the de novo nucleotide synthesis pathway, is O-GlcNAcylated by O-GlcNAc transferase (OGT), which triggers PRPS1 hexamer formation and relieves nucleotide product-mediated feedback inhibition, thereby boosting PRPS1 activity. PRPS1 O-GlcNAcylation blocked AMPK binding and inhibited AMPK-mediated PRPS1 phosphorylation. OGT still regulates PRPS1 activity in AMPK-deficient cells. Elevated PRPS1 O-GlcNAcylation promotes tumorigenesis and confers resistance to chemoradiotherapy in lung cancer. Furthermore, Arts-syndrome-associated PRPS1 R196W mutant exhibits decreased PRPS1 O-GlcNAcylation and activity. Together, our findings establish a direct connection among O-GlcNAc signals, de novo nucleotide synthesis and human diseases, including cancer and Arts syndrome.


Assuntos
Proteínas Quinases Ativadas por AMP , Processamento de Proteína Pós-Traducional , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Fosforilação , Glucose , Nucleotídeos/metabolismo , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo
7.
J Proteome Res ; 23(1): 95-106, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38054441

RESUMO

O-linked ß-N-acetylglucosamine (O-GlcNAc) is a post-translational modification (i.e., O-GlcNAcylation) on serine/threonine residues of proteins, regulating a plethora of physiological and pathological events. As a dynamic process, O-GlcNAc functions in a site-specific manner. However, the experimental identification of the O-GlcNAc sites remains challenging in many scenarios. Herein, by leveraging the recent progress in cataloguing experimentally identified O-GlcNAc sites and advanced deep learning approaches, we establish an ensemble model, O-GlcNAcPRED-DL, a deep learning-based tool, for the prediction of O-GlcNAc sites. In brief, to make a benchmark O-GlcNAc data set, we extracted the information on O-GlcNAc from the recently constructed database O-GlcNAcAtlas, which contains thousands of experimentally identified and curated O-GlcNAc sites on proteins from multiple species. To overcome the imbalance between positive and negative data sets, we selected five groups of negative data sets in humans and mice to construct an ensemble predictor based on connection of a convolutional neural network and bidirectional long short-term memory. By taking into account three types of sequence information, we constructed four network frameworks, with the systematically optimized parameters used for the models. The thorough comparison analysis on two independent data sets of humans and mice and six independent data sets from other species demonstrated remarkably increased sensitivity and accuracy of the O-GlcNAcPRED-DL models, outperforming other existing tools. Moreover, a user-friendly Web server for O-GlcNAcPRED-DL has been constructed, which is freely available at http://oglcnac.org/pred_dl.


Assuntos
Aprendizado Profundo , Humanos , Animais , Camundongos , Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Acetilglucosamina/química , N-Acetilglucosaminiltransferases/metabolismo
8.
Mol Carcinog ; 63(2): 209-223, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37818798

RESUMO

Cyclin dependent kinase 4 and 6 inhibitors such as abemaciclib are routinely used to treat metastatic estrogen receptor positive (ER+) breast cancer. However, adaptive mechanisms inhibit their effectiveness and allow for disease progression. Using ER+ breast cancer cell models, we show that acquired resistance to abemaciclib is accompanied by increase in metastatic potential. Mass spectrometry-based proteomics from abemaciclib sensitive and resistant cells showed that lysosomal proteins including CTSD (cathepsin D), cathepsin A and CD68 were significantly increased in resistant cells. Combination of abemaciclib and a lysosomal destabilizer, such as hydroxychloroquine (HCQ) or bafilomycin A1, resensitized resistant cells to abemaciclib. Also, combination of abemaciclib and HCQ decreased migration and invasive potential and increased lysosomal membrane permeability in resistant cells. Prosurvival B cell lymphoma 2 (BCL2) protein levels were elevated in resistant cells, and a triple treatment with abemaciclib, HCQ, and BCL2 inhibitor, venetoclax, significantly inhibited cell growth compared to treatment with abemaciclib and HCQ. Furthermore, resistant cells showed increased levels of Transcription Factor EB (TFEB), a master regulator of lysosomal-autophagy genes, and siRNA mediated knockdown of TFEB decreased invasion in resistant cells. TFEB was found to be mutated in a subset of invasive human breast cancer samples, and overall survival analysis in ER+, lymph node-positive breast cancer showed that increased TFEB expression correlated with decreased survival. Collectively, we show that acquired resistance to abemaciclib leads to increased metastatic potential and increased levels of protumorigenic lysosomal proteins. Therefore, the lysosomal pathway could be a therapeutic target in advanced ER+ breast cancer.


Assuntos
Aminopiridinas , Benzimidazóis , Neoplasias da Mama , Proteínas , Humanos , Feminino , Neoplasias da Mama/metabolismo , Lisossomos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
9.
Mol Cell ; 83(24): 4570-4585.e7, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38092000

RESUMO

The nucleotide-binding domain (NBD), leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is a critical mediator of the innate immune response. How NLRP3 responds to stimuli and initiates the assembly of the NLRP3 inflammasome is not fully understood. Here, we found that a cellular metabolite, palmitate, facilitates NLRP3 activation by enhancing its S-palmitoylation, in synergy with lipopolysaccharide stimulation. NLRP3 is post-translationally palmitoylated by zinc-finger and aspartate-histidine-histidine-cysteine 5 (ZDHHC5) at the LRR domain, which promotes NLRP3 inflammasome assembly and activation. Silencing ZDHHC5 blocks NLRP3 oligomerization, NLRP3-NEK7 interaction, and formation of large intracellular ASC aggregates, leading to abrogation of caspase-1 activation, IL-1ß/18 release, and GSDMD cleavage, both in human cells and in mice. ABHD17A depalmitoylates NLRP3, and one human-heritable disease-associated mutation in NLRP3 was found to be associated with defective ABHD17A binding and hyper-palmitoylation. Furthermore, Zdhhc5-/- mice showed defective NLRP3 inflammasome activation in vivo. Taken together, our data reveal an endogenous mechanism of inflammasome assembly and activation and suggest NLRP3 palmitoylation as a potential target for the treatment of NLRP3 inflammasome-driven diseases.


Assuntos
Aciltransferases , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Camundongos , Caspase 1/metabolismo , Histidina/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Lipoilação , Macrófagos/metabolismo , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo
10.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958983

RESUMO

O-linked ß-N-acetylglucosamine (O-GlcNAc) is a distinct monosaccharide modification of serine (S) or threonine (T) residues of nucleocytoplasmic and mitochondrial proteins. O-GlcNAc modification (i.e., O-GlcNAcylation) is involved in the regulation of diverse cellular processes, including transcription, epigenetic modifications, and cell signaling. Despite the great progress in experimentally mapping O-GlcNAc sites, there is an unmet need to develop robust prediction tools that can effectively locate the presence of O-GlcNAc sites in protein sequences of interest. In this work, we performed a comprehensive evaluation of a framework for prediction of protein O-GlcNAc sites using embeddings from pre-trained protein language models. In particular, we compared the performance of three protein sequence-based large protein language models (pLMs), Ankh, ESM-2, and ProtT5, for prediction of O-GlcNAc sites and also evaluated various ensemble strategies to integrate embeddings from these protein language models. Upon investigation, the decision-level fusion approach that integrates the decisions of the three embedding models, which we call LM-OGlcNAc-Site, outperformed the models trained on these individual language models as well as other fusion approaches and other existing predictors in almost all of the parameters evaluated. The precise prediction of O-GlcNAc sites will facilitate the probing of O-GlcNAc site-specific functions of proteins in physiology and diseases. Moreover, these findings also indicate the effectiveness of combined uses of multiple protein language models in post-translational modification prediction and open exciting avenues for further research and exploration in other protein downstream tasks. LM-OGlcNAc-Site's web server and source code are publicly available to the community.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas , Proteínas/química , Sequência de Aminoácidos , Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferases/metabolismo
11.
Anal Chem ; 95(49): 17981-17987, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38032138

RESUMO

Despite continuous technological improvements in sample preparation, mass-spectrometry-based proteomics for trace samples faces the challenges of sensitivity, quantification accuracy, and reproducibility. Herein, we explored the applicability of turboDDA (a method that uses data-dependent acquisition without dynamic exclusion) for quantitative proteomics of trace samples. After systematic optimization of acquisition parameters, we compared the performance of turboDDA with that of data-dependent acquisition with dynamic exclusion (DEDDA). By benchmarking the analysis of trace unlabeled human cell digests, turboDDA showed substantially better sensitivity in comparison with DEDDA, whether for unfractionated or high pH fractionated samples. Furthermore, through designing an iTRAQ-labeled three-proteome model (i.e., tryptic digest of protein lysates from yeast, human, and E. coli) to document the interference effect, we evaluated the quantification interference, accuracy, reproducibility of iTRAQ labeled trace samples, and the impact of PIF (precursor intensity fraction) cutoff for different approaches (turboDDA and DEDDA). The results showed that improved quantification accuracy and reproducibility could be achieved by turboDDA, while a more stringent PIF cutoff resulted in more accurate quantification but less peptide identification for both approaches. Finally, the turboDDA strategy was applied to the differential analysis of limited amounts of human lung cancer cell samples, showing great promise in trace proteomics sample analysis.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Humanos , Proteoma/análise , Espectrometria de Massas em Tandem/métodos , Escherichia coli/metabolismo , Reprodutibilidade dos Testes , Peptídeos
12.
BMC Public Health ; 23(1): 2285, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980514

RESUMO

BACKGROUND: Previous studies have suggested the potential association between air pollution and tuberculosis incidence, but this association remains inconclusive and evidence to assess causality is particularly lacking. We aimed to draw causal inference between fine particulate matter less than 2.5 µm in diameter (PM2.5) and tuberculosis in China. METHODS: Granger causality (GC) inference was performed within vector autoregressive models at levels and/or first-differences using annual national aggregated data during 1982-2019, annual provincial aggregated data during 1982-2019 and monthly provincial aggregated data during 2004-2018. Convergent cross-mapping (CCM) approach was used to determine the backbone nonlinear causal association based on the monthly provincial aggregated data during 2004-2018. Moreover, distributed lag nonlinear model (DLNM) was applied to quantify the causal effects. RESULTS: GC tests identified PM2.5 driving tuberculosis dynamics at national and provincial levels in Granger sense. Empirical dynamic modeling provided the CCM causal intensity of PM2.5 effect on tuberculosis at provincial level and demonstrated that PM2.5 had a positive effect on tuberculosis incidence. Then, DLNM estimation demonstrated that the PM2.5 exposure driven tuberculosis risk was concentration- and time-dependent in a nonlinear manner. This result still held in the multi-pollutant model. CONCLUSIONS: Causal inference showed that PM2.5 exposure driving tuberculosis, which showing a concentration gradient change. Air pollutant control may have potential public health benefit of decreasing tuberculosis burden.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Tuberculose , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Tuberculose/epidemiologia , Causalidade , China/epidemiologia , Exposição Ambiental/efeitos adversos
13.
Res Sq ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37886470

RESUMO

Cyclin-dependent kinases 4 and 6 (CDK4/6) play a pivotal role in cell cycle and cancer development. Targeting CDK4/6 has demonstrated promising effects against breast cancer. However, resistance to CDK4/6 inhibitors (CDK4/6i), such as palbociclib, remains a substantial challenge in clinical settings. Using high-throughput combinatorial drug screening and genomic sequencing, we found that the microphthalmia-associated transcription factor (MITF) is activated via O-GlcNAcylation by O-GlcNAc transferase (OGT) in palbociclib-resistant breast cancer cells and tumors; O-GlcNAcylation of MITF at Serine 49 enhanced its interaction with importin α/ß, thus promoting its translocation to nuclei, where it suppressed palbociclib-induced senescence; inhibition of MITF or its O-GlcNAcylation re-sensitized resistant cells to palbociclib. Remarkably, clinical studies confirmed the activation of MITF in tumors from patients who are palbociclib-resistant or undergoing palbociclib treatment. Collectively, our studies shed light on a novel mechanism regulating palbociclib-resistance, and present clinical evidence for developing therapeutic approaches to treat CDK4/6i-resistant breast cancer patients.

14.
J Biol Chem ; 299(8): 104975, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37429506

RESUMO

Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidative stress are increasingly recognized as important causes of renal diseases. Inflammation is closely associated with mitochondrial damage. The molecular connection between inflammation and mitochondrial metabolism remains to be elucidated. Recently, nicotinamide adenine nucleotide (NAD+) metabolism has been found to regulate immune function and inflammation. In the present studies, we tested the hypothesis that enhancing NAD metabolism could prevent inflammation in and progression of DKD. We found that treatment of db/db mice with type 2 diabetes with nicotinamide riboside (NR) prevented several manifestations of kidney dysfunction (i.e., albuminuria, increased urinary kidney injury marker-1 (KIM1) excretion, and pathologic changes). These effects were associated with decreased inflammation, at least in part via inhibiting the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway. An antagonist of the serum stimulator of interferon genes (STING) and whole-body STING deletion in diabetic mice showed similar renoprotection. Further analysis found that NR increased SIRT3 activity and improved mitochondrial function, which led to decreased mitochondrial DNA damage, a trigger for mitochondrial DNA leakage which activates the cGAS-STING pathway. Overall, these data show that NR supplementation boosted NAD metabolism to augment mitochondrial function, reducing inflammation and thereby preventing the progression of diabetic kidney disease.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , NAD/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial/metabolismo , Nucleotidiltransferases/metabolismo , Inflamação/metabolismo , Interferons/metabolismo
15.
Mol Cell Biol ; 43(7): 354-369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427890

RESUMO

Glioma, originating from neuroglial progenitor cells, is a type of intrinsic brain tumor with poor prognosis. temozolomide (TMZ) is the first-line chemotherapeutic agent for glioma. Exploring the mechanisms of circTTLL13 underlying TMZ resistance in glioma is of great significance to improve glioma treatment. Bioinformatics was adopted to identify target genes. The circular structure of circTTLL13 and its high expression in glioma cells were disclosed by quantitative real time-PCR (qRT-PCR) and PCR-agarose gel electrophoresis. Functional experiments proved that oxidized LDL receptor 1 (OLR1) promotes TMZ resistance of glioma cells. CircTTLL13 enhances TMZ resistance of glioma cells via modulating OLR1. Luciferase reporter, RNA-binding protein immunoprecipitation (RIP), RNA pulldown, mRNA stability, N6-methyladenosine (m6A) dot blot and RNA total m6A quantification assays were implemented, indicating that circTTLL13 stabilizes OLR1 mRNA via recruiting YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) and promotes m6A methylation of OLR1 pre-mRNA through recruiting methyltransferase-like 3 (METTL3). TOP/FOP-flash reporter assay and western blot verified that circTTLL13 activates Wnt/ß-catenin signaling pathway by regulating OLR1. CircTTLL13 promotes TMZ resistance in glioma through regulating OLR1-mediated Wnt/ß-catenin pathway activation. This study offers an insight into the efficacy improvement of TMZ for glioma treatment.


Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , beta Catenina/genética , Via de Sinalização Wnt , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , RNA , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Metiltransferases/metabolismo , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo
16.
J Plast Reconstr Aesthet Surg ; 84: 71-78, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37327735

RESUMO

OBJECTIVE: This study aimed to compare the incidence of postoperative complications in patients undergoing cranioplasty with polyetheretherketone (PEEK) materials under different perioperative management schemes and summarize and describe a perioperative bundle to reduce patients' postoperative complications and improve patient outcomes. METHOD: We retrospectively analyzed the clinical data of 69 patients who had undergone craniotomy with PEEK materials in the neurosurgery department of our hospital between June 2017 and June 2021. Patients who had received conventional treatment were defined as the conventional group (29 cases), and those who had received the improved scheme were defined as the improved group (40 cases). The early complications of the two groups were compared, and the long-term effects were observed. RESULTS: The early total complication rates of the conventional and the improved groups were 55.2% and 32.5%, respectively, without any significant difference (P = 0.06), and the long-term complication rates were 24.1% and 7.5%, respectively, with no significant difference (P = 0.112). The incidence of epidural effusion in the improved group was significantly lower than that in the conventional group, with no significant difference in the incidence of complications, such as intracranial pneumatosis, epidural hemorrhage, new seizures and intracerebral hemorrhage. There was no difference in long-term complications, such as seizures, incision infections, and implant exposure. CONCLUSION: Epidural effusion after cranioplasty with PEEK materials is common. This study's improved perioperative bundle can effectively reduce the occurrence of epidural effusion after skull repair.


Assuntos
Procedimentos de Cirurgia Plástica , Humanos , Estudos Retrospectivos , Procedimentos de Cirurgia Plástica/efeitos adversos , Polímeros , Polietilenoglicóis , Cetonas/efeitos adversos , Crânio/cirurgia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/etiologia
17.
Dig Dis Sci ; 68(8): 3283-3292, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37335414

RESUMO

BACKGROUND/AIMS: To explore the protective effects and therapeutic mechanism of Esomeprazole (PPI), polaprezinc granule (PZ), and PPI + PZ on reflux esophagitis (RE) in the rat model. METHODS: Wistar rats were randomly divided into 9 groups, which contain the control group, the acid cessation group (0.7% HCl, Q3D × 4), and the acid persistence group (0.7% HCl, Q3D × 11). PPI was administered by gavage at 8 mg·kg-1 body weight and PZ was administered by gavage at 120 mg·kg-1 body weight once a day for 15 days. The gastric cardia tissue of the feeding tube was observed under the light microscope, and the levels of interleukin-8 (IL-8) and prostaglandin E2 (PGE2) were measured by ELISA. The expression of EGFR, Akt, p-Akt, and p-mTOR was detected by Western blot. RESULTS: The ELISA results showed that the levels of IL-8 and PGE2 were significantly increased in the model group, but decreased in all groups after treatment. In the acid cessation group, PZ treatment had the most significant effect on reducing IL-8 levels and PPI + PZ treatment had the most significant effect on reducing PGE2 levels. In the acid persistence group, the PPI treatment had the most significant effect on reducing the levels of IL-8 and PGE2, and the PZ treatment could also significantly reduce their levels, close to the normal value. Western blot results showed that the expression of PI3K/Akt/mTOR pathway protein was increased in the model group, while its expression was decreased after treatment. CONCLUSIONS: Polaprezinc has a significant therapeutic effect on RE in rats, which can reduce the levels of IL-8 and PGE2 and downregulate the expression of PI3K/Akt/mTOR signal pathway protein. The efficacy of polaprezinc in the treatment of reflux esophagitis is comparable to that of PPI, and the combination of them is more effective in the reflux esophagitis treatment.


Assuntos
Esofagite Péptica , Ratos , Animais , Esofagite Péptica/tratamento farmacológico , Interleucina-8 , Ratos Wistar , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Dinoprostona/uso terapêutico , Serina-Treonina Quinases TOR
18.
Anal Methods ; 15(18): 2181-2190, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37039091

RESUMO

A biopsy is usually used to remove a piece of tissue from a patient for laboratory testing. The interstitial fluid is taken out at the same time as the tissue sample. Since interstitial fluid flows between cells and capillaries in tissues, similar to blood plasma, it is necessary to separate interstitial fluid from tissues in order to study them separately. Vacuum blood sampling has been used to draw blood into vacuum-sealed tubes, while interstitial fluid can be removed directly from the skin using microneedles with standard pumps. However, no methods are available to separate blood or interstitial fluid from the tissue itself for molecular characterization. In this study, we designed a biomedical device that can separate interstitial fluid from tissue using a vacuum-assisted filtration method. The device has a chamber that collects fluid extracted from the tissue that remains on top of the filter. We characterized the weight change and glycan profiles of tissues before and after vacuum-assisted filtration. The results demonstrate that the biomedical device can remove interstitial fluid and facilitate the analysis of tissue-specific molecules while minimizing information from the interstitial fluid.


Assuntos
Capilares , Líquido Extracelular , Humanos , Vácuo , Biópsia , Veias
19.
iScience ; 26(3): 106294, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36936781

RESUMO

Transient receptor potential canonical type 6 (TRPC6) is a non-voltage-gated channel that principally conducts calcium. Elevated channel activation contributes to fibrosis, hypertrophy, and proteinuria, often coupled to stimulation of nuclear factor of activated T-cells (NFAT). TRPC6 is post-translationally regulated, but a role for O-linked ß-N-acetyl glucosamine (O-GlcNAcylation) as elevated by diabetes, is unknown. Here we show TRPC6 is constitutively O-GlcNAcylated at Ser14, Thr70, and Thr221 in the N-terminus ankryn-4 (AR4) and linker (LH1) domains. Mutagenesis to alanine reveals T221 as a critical controller of resting TRPC6 conductance, and associated NFAT activity and pro-hypertrophic signaling. T→A mutations at sites homologous in closely related TRPC3 and TRPC7 also increases their activity. Molecular modeling predicts interactions between Thr221-O-GlcNAc and Ser199, Glu200, and Glu246, and combined alanine substitutions of the latter similarly elevates resting NFAT activity. Thus, O-GlcNAcylated T221 and interactions with coordinating residues is required for normal TRPC6 channel conductance and NFAT activation.

20.
Phys Chem Chem Phys ; 25(13): 9349-9356, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36920444

RESUMO

Surface passivation by constructing a 2D/3D structure is considered to be an effective strategy for suppressing non-radiative recombination and improving the device efficiency and stability. Herein, the 2D perovskite is formed in situ on the surface of a 3D perovskite via chemical interactions between diethylammonium iodide (DAI) and Pb-I octahedra, which greatly reduces the deep level defects and non-radiative recombination. Moreover, the 2D/3D structure can regulate the energy level alignment, enhance the charge extraction, and improve the open-circuit voltage. Finally, compared with the control device, the power conversion efficiency (PCE) of the DAI-treated device increases from 21.58 to 23.50%. The unencapsulated devices stored in air for more than 500 hours can still retain 97% of their initial PCE, revealing good long-term placement stability. This work provides a promising strategy to fabricate efficient PSCs through the in situ construction of 2D/3D perovskite heterojunctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA