Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930840

RESUMO

With cyclohexane (CH), benzene (BE), and ethyl acetate (EA) as solvents, Naomaohu lignite (NL, a typical oil-rich, low-rank coal) from Hami, Xinjiang, was thermally dissolved (TD) to obtain three types of soluble organics (NLCH, NLBE, and NLEA) and the corresponding insoluble portions (NLCH-R, NLBE-R, and NLEA-R). Ultimate analysis, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG-DTG), and gas chromatography-mass spectrometry (GC/MS) were used to characterize NL and its soluble and insoluble portions. Results showed that, compared with NL, the C element in NLCH-R, NLBE-R, and NLEA-R increased, while the O element decreased significantly, indicating that thermal dissolution is a carbon enrichment process and an effective deoxidation method. The GC/MS results showed that oxygen-containing organic compounds (OCOCs) are dominant in NLCH, NLBE, and NLEA. NLCH is mainly composed of ketones (11.90%) and esters (19.04%), while NLBE and NLEA are composed of alcohols (12.18% and 2.42%, respectively) and esters (66.09% and 84.08%, respectively), with alkyl and aromatic acid esters as the main components. Among them, EA exhibits significant selective destruction for oxygen-containing functional groups in NL. XPS, FTIR, and TG-DTG results showed that thermal dissolution can not only affect the macromolecular network structure of NL, but also improve its pyrolysis reactivity. In short, thermal dissolution can effectively obtain oxygen-containing organic compounds from NL.

2.
Molecules ; 28(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894553

RESUMO

Easily soluble organic components in Santanghu long flame coal (SLFC) from Hami (Xinjiang, China) were separated by CS2 and acetone mixed solvent (v/v = 1:1) under ultrasonic condition, and the extract residue was stratified by carbon tetrachloride to obtain the light raffinate component (SLFC-L). The effect of solvent treatment on the composition and structure of the coal and its rapid pyrolysis products was analyzed. Solvent treatment can reduce the moisture content in coal from 9.48% to 6.45% and increase the volatile matter from 26.59% to 28.78%, while the macromolecular structure of the coal changed slightly, demonstrating the stability of coal's complex organic structure. Compared with raw coal, the relative contents of oxygen-containing functional groups and aromatic groups in SLFC-L are higher, and the weight loss rates of both SLFC and SLFC-L reached the maximum at about 450 °C. In contrast, the loss rate of SLFC-L is more obvious, being 33.62% higher than that of SLFC. Pyrolysis products from SLFC at 450 °C by Py-GC/MS are mainly aliphatic hydrocarbons and oxygenated compounds, and the relative contents of aliphatic hydrocarbons decreased from 48.48% to 36.13%, while the contents of oxygenates increased from 39.07% to 44.95%. Overall, the composition and functional group in the coal sample were changed after solvent treatment, resulting in a difference in the composition and distribution of its pyrolysis products.

3.
Environ Res ; 216(Pt 2): 114567, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36244441

RESUMO

The recovery of heavy metals from electroplating sludge is important for alleviating heavy metal pollution and recycling metal resources. However, the selective recovery of metal resources is limited by the complexity of electroplating sludge. Herein, CuFe bimetallic Fenton-like catalysts were successfully prepared from electroplating sludge by a facile room-temperature ultrasonic-assisted co-precipitation method. The prepared CuFe-S mainly consisted of nanorods with diameters of 20-30 nm and lengths of 100-200 nm and a small number of irregular particles. Subsequently, we performed tetracycline (TC) degradation experiments, and the results showed that the product CuFe-S had very good performance over a wide pH range (2-11). At an initial pH = 2, CuFe-S could degrade 91.9% of 50 mg L-1 TC aqueous solution within 30 min, which is better than that of a single metal catalyst. Free radical scavenging experiments and electron paramagnetic resonance (EPR) tests revealed that ·OH was the main active species for the degradation of TC by CuFe-S. In conclusion, a CuFe bimetallic Fenton-like catalyst was developed for the catalytic degradation of antibiotics, which provides a novel technical route for the resource utilization of electroplating sludge and shows an important practical application prospect.


Assuntos
Metais Pesados , Esgotos , Galvanoplastia , Cobre , Catálise , Antibacterianos , Peróxido de Hidrogênio
4.
Dalton Trans ; 50(14): 5036-5043, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33877201

RESUMO

Rational structural and compositional modulation endows electrode materials with unique physicochemical characteristics due to their adjustable electronic properties. Herein, a phosphate-modified hierarchical nanoarray consisting of a heterojunction with a well-aligned cobalt phosphide nanowire core and nickel phosphide nanosheet shell on flexible carbon cloth (denoted as CoP@Ni2P-CC) is engineered. The phosphate-modulated heterogeneous phosphide with a tuned electronic structure, additional heterojunction interfaces, and high degree of covalency in the chemical bonds accelerates the reaction kinetics and enhances the energy storage performance. Due to these reasons, the as-obtained phosphide-based heterostructured CoP@Ni2P-CC electrode delivers a capacity of 475.9 C g-1 at 0.5 A g-1 with a satisfying rate capability, which is greatly superior to that of its transition metal counterparts (sulfide, selenide, and oxide). After being assembled into a flexible hybrid supercapacitor (FHSC), a wide operating voltage (1.8 V), high energy/power densities (49.8 W h kg-1/8.6 kW kg-1), and long-term stability (85.1% capacity retention after 10 000 cycles) were achieved. This work may provide a general method from multiple strategies for designing reliable pseudocapacitive materials for flexible electronics.

5.
Sensors (Basel) ; 19(5)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871099

RESUMO

In this paper, WO3·0.33H2O nanorods were prepared through a simple hydrothermal method using p-aminobenzoic acid (PABA) as an auxiliary reagent. X-ray diffraction (XRD) and transmission electron microscopy (TEM) images showed that the products with PABA addition were orthorhombic WO3·0.33H2O, which were mainly composed of nanorods with different crystal planes. The sensing performance of WO3·0.33H2O nanorod bundles prepared by the addition of PABA (100 ppm cyclohexene, Ra/Rg = 50.6) was found to be better than the WO3 synthesized without PABA (100 ppm cyclohexene, Ra/Rg = 1.3) for the detection of cyclohexene. The new synthesis route and sensing characteristics of as-synthesized WO3·0.33H2O nanorods revealed a promising candidate for the preparation of the cost-effective gas sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA