Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834697

RESUMO

We have particularly investigated the correlation law of the effect of different carbon black fillings on the hyper-elastic mechanical behavior of natural rubber by conducting uniaxial tensile tests over a wide range of deformations with different volume fractions of carbon black fillings (0%, 4.7%, 8.9%, 12.8%, 16.4%, 19.7%, 22.7% and 25.2%). The results show that the stress-strain curve for carbon black filled rubber increases with the amount of filling, meaning that the rubber gradually becomes "harder". We explore the correlation between the carbon black filling volume and the parameters of the Yeoh constitutive model by examining the Yeoh constitutive model to characterize the hyper-elastic mechanical behavior of rubber with different carbon black fillings. A quantitative relationship between the material parameters and the carbon black filling volume in the Yeoh constitutive model is presented. A method for calculating the material parameters of the Yeoh constitutive model is developed, and it predicts the correlation between the hyper-elastic properties of rubber and the volume fraction of the carbon black filling.

2.
Polymers (Basel) ; 14(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36501452

RESUMO

The thermomechanical and tribological properties of graphene (GNS)-reinforced NR were investigated using molecular dynamics (MD) simulations. The amorphous molecular dynamics models of two nanocomposites, i.e., natural rubber (pure NR) and graphene/natural rubber (GNS/NR), were established. In addition, the thermodynamic properties of the two materials, before and after the incorporation of graphene into the natural rubber matrix, were investigated through analytical comparison. The results showed that after the graphene was added to the rubber matrix as a reinforcing material, the elastic modulus and shear modulus were increased by 110% and 94.8%, respectively, the tensile property was increased by 178%, the overall thermal conductivity of the composite system was increased by 59%, the glass transition temperature increased from 223 K to 236 K, and the rigidity of the material matrix was significantly improved. The inherent interactions and wear mechanisms of the polymer nanocomposites were discussed at the atomic scale by analyzing the changes in temperature, atomic velocity, relative atomic concentration, and radial distribution functions at the friction interface in the thickness direction.

3.
Polymers (Basel) ; 14(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36080596

RESUMO

Based on the electronic universal testing machine with a temperature chamber, this paper investigated the temperature and filler effects on the hyper-elastic behavior of reinforced rubbers and revealed the regulation of the stress and strain of the natural rubber and filled rubber with temperature. The experimental results showed that the hyper-elastic behavior of the filled rubber was temperature-dependent in a wide range. Comparing the adaptability of different models to the stress-strain variation with temperature, the Yeoh model was proven to reasonably characterize the experimental data at different temperatures. Based on the Yeoh model, an explicit temperature-dependent constitutive model was developed to describe the stress-strain response of the filled rubber in a relatively large temperature range. The prediction data of this proposed constitutive model fit well with the test data of the mechanical experiments, indicating that the model is suitable to characterize the large deformation behavior of filled rubbers at different temperatures to a certain degree. The proposed model can be used to obtain the material parameters and has been successfully applied to finite element analysis (FEA), suggesting a high application value. Notably, the model has a simple form and can be conveniently applied in related performance tests of actual production or finite element analysis.

4.
Polymers (Basel) ; 13(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503897

RESUMO

In this paper, some representative hyperelastic constitutive models of rubber materials were reviewed from the perspectives of molecular chain network statistical mechanics and continuum mechanics. Based on the advantages of existing models, an improved constitutive model was developed, and the stress-strain relationship was derived. Uniaxial tensile tests were performed on two types of filled tire compounds at different temperatures. The physical phenomena related to rubber deformation were analyzed, and the temperature dependence of the mechanical behavior of filled rubber in a larger deformation range (150% strain) was revealed from multiple angles. Based on the experimental data, the ability of several models to describe the stress-strain mechanical response of carbon black filled compound was studied, and the application limitations of some constitutive models were revealed. Combined with the experimental data, the ability of Yeoh model, Ogden model (n = 3), and improved eight-chain model to characterize the temperature dependence was studied, and the laws of temperature dependence of their parameters were revealed. By fitting the uniaxial tensile test data and comparing it with the Yeoh model, the improved eight-chain model was proved to have a better ability to predict the hyperelastic behavior of rubber materials under different deformation states. Finally, the improved eight-chain model was successfully applied to finite element analysis (FEA) and compared with the experimental data. It was found that the improved eight-chain model can accurately describe the stress-strain characteristics of filled rubber.

5.
Polymers (Basel) ; 12(4)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316485

RESUMO

Rubber-based materials are widely used in a variety of industrial applications. In these applications, rubber components withstand various loading conditions over a range of temperatures. It is of great significance to study the mechanical behavior of vulcanized rubber at different temperatures, especially in a range of high temperatures. The temperature dependence of the constitutive behavior of filled rubber is important for the performance of the rubber. However, only a few constitutive models have been reported that investigate the stress-temperature relationship. In this paper, based on an analysis of experimental data, the effects of temperature on the hyperelastic behaviors of both natural rubber and filled rubber, with different mass fractions of carbon black, were studied. The regulation of stress and strain of natural rubber and filled rubber with temperature was revealed. In addition, an eight-chain model that can reasonably characterize the experimental data at different temperatures was proved. An explicit temperature-dependent constitutive model was developed based on the Arruda-Boyce model to describe the stress-strain response of filled rubber in a relatively large temperature range. Meanwhile, it was proved that the model can predict the effect of temperature on the hyperelastic behavior of filled rubber. Finally, the improved Arruda-Boyce model was used to obtain the material parameters and was then successfully applied to finite element analysis (FEA), which showed that the model has high application value. In addition, the model had a simple form and could be conveniently applied in related performance test of actual production or finite element analysis.

6.
Asian-Australas J Anim Sci ; 33(1): 132-138, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31208186

RESUMO

OBJECTIVE: To investigate the effects of low-dose trace mineral proteinates on reproductive performance, mineral status, milk immunoglobulin contents and fecal mineral excretion of sows. METHODS: Eighty crossbred sows (Landrace×Large White) were randomly allocated to two groups in a 135-day trail, from breeding through 21 d postpartum. The two treatments were inorganic trace minerals (ITM): a basal diet+inorganic iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn) at 90, 15, 25 and 90 mg/kg, respectively and organic trace minerals (OTM): a basal diet+proteinates of Fe, Cu, Mn, and Zn at 72, 12, 20, and 72 mg/kg, respectively. RESULTS: Compared with ITM, OTM significantly increased (p<0.05) the number of piglets with birthweight >1 kg, the litter weaning weight, and milk Fe, Cu contents. No significant differences (p>0.05) were observed on sow hair mineral contents or immunoglobulin M (IgM), IgG, and IgA contents in colostrum and milk. In comparsion to ITM, OTM decreased fecal Fe, Cu, Mn, and Zn contents of gestating sows (p<0.01) and Fe, Mn, and Zn in lactating sows (p<0.01). CONCLUSION: These results indicate that low-dose mineral proteinates can increase the number of piglets with birthweight >1 kg, the litter weaning weight and certain milk mineral concentrations while reducing fecal mineral excretion.

7.
Asian-Australas J Anim Sci ; 33(7): 1156-1166, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31480143

RESUMO

OBJECTIVE: The aim of this study was to evaluate the effects of compound organic acid calcium (COAC) on growth performance, hepatic antioxidant status and intestinal barrier of male broilers under high ambient temperature (32.7°C). METHODS: Nine hundred healthy one-d-old Cobb-500 male broiler chicks were randomly assigned into three groups with six replicates of 50 birds each. A basal diet supplemented with 0% (control), 0.4% and 0.8% COAC, respectively were fed to birds for 6 weeks. All treatments were under high ambient indoor temperature of 32.7°C, and had a constant calcium and available phosphorus ratio. RESULTS: The results showed that, compared with control, the average daily gain of broilers in 0.4% and 0.8% was significantly increased and the ratio of feed to gain in in 0.4% and 0.8% was significantly decreased at 1 to 21, 22 to 42 and 1 to 42 days of age (p<0.05). Compared with control, 0.8% COAC slightly decreased (p = 0.093) the content of malondialdehyde in liver at 42 days of age while 0.4% COAC significantly decreased (p<0.05) the activity of alkaline phosphatase. Furthermore, 0.4% COAC significantly enhanced the intestinal barrier function via increasing jejunal and ileal ocln transcription, promoting jejunal mucin 2 transcription at 42 days of age (p<0.05), and decreasing jejunal toll-like receptor 2 (TLR-2) and ileal TLR-15, inducible nitric oxide synthase compared with control group (p<0.05). Whereas, no significant differences on the transcription of interleukin-1ß in jejunum and ileum were observed among three treatments (p>0.05). Overall, heat stress caused by high natural environment temperature may induce the damage to hepatic antioxidation and intestinal barrier. CONCLUSION: Dietary inclusion of COAC can improve the tolerance of broilers to thermal environment through the modification of antioxidative parameters in liver and the mRNA expression of genes in intestinal barrier, resulting in an optimal inclusion level of 0.4%.

8.
Asian-Australas J Anim Sci ; 33(4): 588-596, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31480181

RESUMO

OBJECTIVE: The objective of this study was to investigate the effects of low doses of organic trace minerals (iron, copper, manganese, and zinc) on productive performance, egg quality, yolk and tissue mineral retention, and fecal mineral excretion of laying hens during the late laying period. METHODS: A total of 405 healthy hens (HY-Line White, 50-week-old) were randomly divided into 3 treatments, with 9 replicates per treatment and 15 birds per replicate. The dietary treatments included feeding a basal diet + inorganic trace minerals at commercial levels (CON), a basal diet + inorganic trace minerals at 1/3 commercial levels (ITM), and a basal diet + proteinated trace minerals at 1/3 commercial levels (TRT). The trial lasted for 56 days. RESULTS: Compared to CON, ITM decreased (p<0.05) egg production, daily egg mass, albumen height, eggshell strength, yolk Fe concentration, serum alkaline phosphatase activity and total protein, and increased (p<0.05) egg loss and feed to egg ratio. Whereas with productive performance, egg quality, yolk mineral retention, and serum indices there were no differences (p>0.05) between CON and TRT. The concentrations of Fe and Mn in the tissue and tibia were changed notably in ITM relative to CON and TRT. Both ITM and TRT reduced (p<0.05) fecal mineral excretion compared to CON. CONCLUSION: These results indicate that dietary supplementation of low-dose organic trace minerals reduced fecal mineral excretion without negatively impacting hen performance and egg quality.

9.
Polymers (Basel) ; 10(7)2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30960618

RESUMO

The thermal conductivity of flake graphite (FG) particulates reinforced high density polyethylene (HDPE) composites was systematically investigated under a special dispersion state of FG particles. The effects of particle size, weight filling ratio and proportion of various sizes were discussed in detail. A special composite (15 wt % 500 µm/10 wt % 200 µm/10 wt % 20 µm/5 wt % 2 µm FG + 60 wt % polyethylene (PE)) with a high thermal conductivity about 2.49 W/(m·K) was produced by combining the synergistic effect of several fillers. The component material size distribution was employed to analyze the effect of particle size. And scanning electron microscope (SEM) was adopted to observe the FG network in the composites. Thermogravimetric analysis (TGA) revealed the good thermal stability of composites. Differential scanning calorimetry (DSC) indicated that all composites own a similar melting temperature. Sample compression experiment indicated that all composites still exhibit high mechanical strength. Consequently, the easy-making flake graphite reinforced polyethylene composites with a high thermal conductivity would have a wide application in the new material field, such as a thermal interface material, a heat exchanger, voltage cable, etc.

10.
J Nanosci Nanotechnol ; 15(4): 3244-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26353571

RESUMO

Thermal conductivity of natural rubber has been studied by classic molecular dynamics simulations. These simulations are performed on natural rubber models using the adaptive intermolecular reactive empirical bond order (AIREBO) and the Green-Kubo molecular dynamics (MD) simulations. Thermal conductivity results are found to be very sensitive to the time step used in the simulations. For a time step of 0.1 fs, the converged thermal conductivity is 0.35 W/mK. Additionally the anisotropic thermal conductivity of a specially-modeled natural rubber model with straight molecular chains was studied and values of thermal conductivity parallel to the molecular chains was found to be 1.71 W/mK and the anisotropy, 2Kz/(Kx + Ky), was 2.67.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA