Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Ophthalmol ; 16(12): 1952-1961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111929

RESUMO

AIM: To investigate the genetic and clinical characteristics of patients with a large heterozygous copy number deletion on 7q31.31-7q31.32. METHODS: A family with familial exudative vitreoretinopathy (FEVR) phenotype was included in the study. Whole-exome sequencing (WES) was initially used to locate copy number variations (CNVs) on 7q31.31-31.32, but failed to detect the precise breakpoint. The long-read sequencing, Oxford Nanopore sequencing Technology (ONT) was used to get the accurate breakpoint which is verified by quantitative real-time polymerase chain reaction (QPCR) and Sanger Sequencing. RESULTS: The proband, along with her father and younger brother, were found to have a heterozygous 4.5 Mb CNV deletion located on 7q31.31-31.32, which included the FEVR-related gene TSPAN12. The specific deletion was confirmed as del(7)(q31.31q31.32)chr7:g.119451239_123956818del. The proband exhibited a phase 2A FEVR phenotype, characterized by a falciform retinal fold, macular dragging, and peripheral neovascularization with leaking of fluorescence. These symptoms led to a significant decrease in visual acuity in both eyes. On the other hand, the affected father and younger brother showed a milder phenotype. CONCLUSION: The heterozygous CNV deletion located on 7q31.31-7q31.32 is associated with the FEVR phenotype. The use of long-read sequencing techniques is essential for accurate molecular diagnosis of genetic disorders.

2.
BMC Ophthalmol ; 22(1): 386, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36162988

RESUMO

PURPOSE: Alström Syndrome (AS) is an autosomal recessive hereditary disease with the characteristics of multiorgan dysfunction. Due to the heterogeneity of clinical manifestations of AS, genetic testing is crucial for the diagnosis of AS. Herein, we used whole-exome sequencing (WES) to determine the genetic causes and characterize the clinical features of three affected patients in two Chinese families with Alström Syndrome. MATERIALS AND METHODS: Three affected patients (initially diagnosed as achromatopsia). and five asymptomatic members were recruited for both genetic and clinical tests. The complete ophthalmic examinations and systemic examinations were performed on all participants. Whole exome sequencing (WES) was performed for mutation detection. The silico analysis was also applied to predict the pathogenesis of identified pathogenic variants. RESULTS: In family 1, the proband showed low vision, hyperopia, photophobia, nystagmus, and total color blindness. DNA analysis revealed that she carried a compound heterozygote with two novel pathogenic variants in the ALMS1 gene NM_015120.4:c.10379del (NP_055935.4:p.(Asp2252Tyr)) and NM_015120.4:c.11641_11642del (NP_055935.4:p.(Val3881ThrfsTer11)). Further systemic examinations showed short stature, acanthosis nigricans, and sensorineural hearing loss. In family 2, two affected siblings presented the low vision, hyperopia, photophobia, nystagmus, and total color blindness. DNA analysis revealed that they carried a same compound heterozygote with two novel pathogenic variants in the ALMS1 gene NM_015120.4:c.10379del (NP_055935.4:p.(Asn3460IlefsTer49)), NM_015120.4:c.10819C > T (NP_055935.4:p.(Arg3607Trp)). Further systemic examinations showed obesity and mild abnormalities of lipid metabolism. According to the genetic testing results and further systemic analysis, the three affected patients were finally diagnosed as Alström Syndrome (AS). CONCLUSIONS: We found two new compound heterozygous pathogenic variants of the ALMS1 gene and determined the diagnosis as Alström Syndrome in three patients of two Chinese families. Our study extends the genotypic and phenotypic spectrums for ALMS1 -AS and emphasizes the importance of gene testing in assisting the clinical diagnosis for cases with phenotypic diversities, which would help the AS patients with early diagnosis and treatment to reduce future systemic damage.


Assuntos
Síndrome de Alstrom , Hiperopia , Baixa Visão , Síndrome de Alstrom/diagnóstico , Síndrome de Alstrom/genética , Proteínas de Ciclo Celular/genética , China , Defeitos da Visão Cromática , DNA/genética , Feminino , Humanos , Mutação , Linhagem , Fotofobia
3.
Int J Ophthalmol ; 14(4): 504-509, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33875939

RESUMO

AIM: To characterize the genetic causes and clinical features in a four-generation Chinese family with blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). METHODS: Thirteen patients with BPES and eight healthy family members were included in this study. All participants received routine ophthalmic examinations. The target next-generation sequencing (NGS) was performed to determine the causative mutation for this family. The silico analysis was also applied to predict the pathogenesis of identified mutations. RESULTS: All patients had severe ptosis, normal intelligence, female patients have normal fertility. Genetic assessments revealed a heterozygous insertion variation in FOXL2 gene, c.672_701insGCGGCTGCCGC CGCAGCTGCTG CAGGCGCT (p.Ala234_Gly235linsAAAAAAAAGA), carried by 13 patient but absent in all unaffected members. In silico analysis supported the pathogenic nature of this highly conserved variant. This mutation resulted in the insertion of 10 amino acids into the encoded polyala nine chain, which increased the number of original polyalanine chains from 14 to 24, resulting in an extended protein. CONCLUSION: A novel FOXL2 mutation c.672_701ins GCGGCTGCCGCCGCAGCTGCTGC AGGCGCT (p.Ala234_Gly235linsAAAAAAAAGA) was identified in a large Chinese family with BPES. This study amplified the genotypic spectrum of FOXL2-BPES and better illustrates its genotype-phenotype correlations, which provided a basis for elucidating the pathogenesis of BPES and genetic counseling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA