Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Foods ; 12(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37761088

RESUMO

Walnuts are one of the world's most important nut species and are popular for their high nutritional value, but the processing of walnuts produces numerous by-products. Among them, Diaphragma Juglandis Fructus has attracted the attention of researchers due to its complex chemical composition and diverse bioactivities. However, comprehensive reviews of extract activity and mechanistic studies, chemical composition functionality, and product types are scarce. Therefore, the aim of this review is to analyze the extracts, chemical composition, and product development of Diaphragma Juglandis Fructus. Conclusions: For extracts, the biological activities of aqueous and ethanol extracts have been studied more extensively than those of methanol extracts, but almost all of the studies have been based on crude extracts, with fewer explorations of their mechanisms. For chemical composition, the bioactivities of polyphenols and polysaccharides were more intensively studied, while other chemical constituents were at the stage of content determination. For product development, walnuts are mainly used in food and medicine, but the product range is limited. In the future, research on the bioactivity and related mechanisms of Diaphragma Juglandis Fructus can be further expanded to improve its value as a potential natural plant resource applied in multiple industries.

3.
Fitoterapia ; 171: 105605, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37437698

RESUMO

Carthamus tinctorius L. leaves, a waste product after Carthami flos production, are rich in flavonoids. Total flavonoids from C. tinctorius L. leaves (TFCTLL) exhibited the protective effect on acute liver injury in mice in previous studies. The aim of the present study was to evaluate the hepatoprotective effect of TFCTLL on chronic liver injury (CLI) and investigate the underlying mechanism. The chemical components of TFCTLL were identified by UPLC-Q-TOF/MS, and their migration into blood was evaluated. The protective effect of TFCTLL on CLI was evaluated by antioxidative and anti-inflammatory experiments in vitro, network pharmacology and a carbon tetrachloride (CCl4)-induced CLI mouse model. We indentified 18 chemical components in the TFCTLL samples and 4 components in plasma. TFCTLL showed significant anti-inflammatory activity and antioxidant capacity in vitro and in vivo. TFCTLL administration prominently improved the liver function and structure, decreased the mRNA expression levels of TLR2, TLR3, TLR4, NF-κB p65, IRF3, AKT1, TRIF, PI3K, MyD88, IL-1ß and TNF-α and inhibited the protein expression and nuclear translocation of NF-κB p65 in mice with CLI. The molecular docking results showed that components in plasma had high binding affinity for the targets TLR4, PI3K and AKT1. Therefore, TFCTLL has a protective effect against CCl4-induced CLI, and the underlying mechanisms may be related to antioxidation, anti-inflammation and modulation of the TLRs/NF-κB and PI3K/AKT pathways.


Assuntos
Tetracloreto de Carbono , Carthamus tinctorius , Camundongos , Animais , Tetracloreto de Carbono/metabolismo , Tetracloreto de Carbono/farmacologia , Carthamus tinctorius/química , Carthamus tinctorius/metabolismo , Estresse Oxidativo , NF-kappa B/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Simulação de Acoplamento Molecular , Receptor 4 Toll-Like/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Estrutura Molecular , Fígado , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo
4.
Anal Chim Acta ; 1261: 341225, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37147057

RESUMO

A rapid, fast, widely applicable liquid-solid microextraction and purification method of triazine herbicides (TRZHs) in muti-media samples using salting-out assisted liquid-liquid extraction (SALLE) combined with self-assembled monolithic spin columns-solid phase micro extraction (MSC-SPME) was developed. Environmentally friendly coconut shell biochar (CSB) was used as the adsorbents of MSC-SPME. Ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was the separation and determination method. The adsorption kinetics and isotherms were investigated to indicate the interaction between CSB and TRZHs. Several parameters influencing the liquid-solid microextraction efficiency, such as sample pH, salting-out solution volume and pH, sample loading speed, elution speed, elution ratio and volume of eluent were systematically investigated with the aid of orthogonal design. The whole extraction process was operated within 10 min. Under the optimum extraction and determination conditions, good linearities for three TRZHs were obtained in a range of 0.10-200.00 ng mL-1, with linear coefficients (R2) greater than 0.999. The limits of detection (LODs) and limits of quantification (LOQs) were in the range of 6.99-11.00 ng L-1 and 23.33-36.68 ng L-1, respectively. The recoveries of the three TRZHs in multi-media environmental samples were ranged from 69.00% to 124.72%, with relative standard deviations (RSDs) lower than 0.43%. This SALLE-MSC-SPME-UPLC-MS/MS method was successfully applied to the determination of TRZHs in environmental and food samples and exhibited the advantages of high efficiency and sensitivity, low cost, and environmental friendliness. Compared with the methods published before, CSB-MSC was green, rapid, easy-operated, and reduced the whole cost of the experiment; SALLE combined MSC-SPME eliminated the matrix references effectively; what's more, the SALLE-MSC-SPME-UPLC-MS/MS method could be applied to various sample without complicated sample pretreatment procedure.


Assuntos
Cocos , Herbicidas , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Herbicidas/análise , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida , Triazinas/análise
5.
Food Res Int ; 154: 111018, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35337576

RESUMO

Sucrose laurate (SL) is a promising dual-functional additive due to its emulsification and antibacterial activity. However, the knowledge on the antibacterial action of SL against Bacillus cereus was lacking, and thus it was investigated from multiple targets. The antibacterial results demonstrated that the minimum inhibitory concentration of SL was 0.3125 mg/mL, and the time-killing curve confirmed the strong antibacterial activity of SL. The alkaline phosphatase assay suggested that SL disrupted the cell wall integrity. The flow cytometry and fluorescence spectroscopy analysis indicated that SL damaged the integrity of cell membrane and dissipated the transmembrane potential, resulting in the leakage of intracellular materials, which were further supported by scanning electron microscopy and transmission electron microscopy. iTRAQ-based proteomic analysis indicated that SL down-regulated cell wall-associated hydrolase, inhibited the synthesis of fatty acids, influenced nucleic acid synthesis, disturbed amino acid metabolism, and blocked HMP pathway and TCA cycle. Finally, the promising application of SL was evidenced in milk beverage. This investigation could provide scientific basis for the practical application of SL as a dual-functional food additive.


Assuntos
Bacillus cereus , Leite , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bebidas , Leite/microbiologia , Proteômica , Sacarose/análogos & derivados
6.
Food Res Int ; 139: 109562, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33509445

RESUMO

Phenyllactic acid (PLA) as a phenolic acid by lactic acid (LA) bacteria shows enhanced antibacterial activity when coexisting with LA, while the antibacterial mechanism of PLA combined with LA was unknown. Hence, the antibacterial mechanism of PLA and LA was investigated against Bacillus cereus. Flow cytometry and TEM analysis demonstrated that single PLA and LA disrupted the membrane integrity and the morphology, while combined PLA and LA synergistically enhanced the damage. iTRAQ-based proteomic analysis suggested that PLA down-regulated kdpB and inhibited K+ transport, disturbed the function of ribosome and expression of competence genes; LA down-regulated periplasmic phosphorus-binding proteins and inhibited phosphorus transport, disturbed the function of ribosome, TCA cycle, as well as purine and pyrimidine metabolism; and combined PLA and LA inhibited K+ and phosphorus transport, and influenced the synthesis of purine and pyrimidine metabolism. The investigation could provide some insights into the application of PLA in food preservation.


Assuntos
Bacillus cereus , Ácido Láctico , Antibacterianos/farmacologia , Lactatos , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA