Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124200, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38565048

RESUMO

The discovery of high thermal stability, broad-band near-infrared (NIR) fluorescent phosphors holds significant potential in applications such as non-destructive testing, promoting plant growth, and night vision devices. In this study, a novel broad-band NIR phosphors Li2MgZrO4 (LMZ): 1.0 %Cr3+, y%Yb3+ were synthesized via a high-temperature solid-state reaction method, with the optimal doping concentration found to be y = 1.5. These phosphors exhibited broad NIR emission in the range of 700-1050 nm by effective energy transfer from Cr3+ to Yb3+. The maximum full width at half maximum (FWHM) of the Cr3+/Yb3+ co-doped LMZ phosphor is 270 nm. The thermal stability of the phosphors was improved with Yb3+ co-doping. Additionally, energy transfer from Cr3+ to Yb3+ was confirmed through luminescence spectra and lifetime analysis. Finally, NIR pc-LED devices composed of a 460 nm ultraviolet chip and LMZ: 1.0 %Cr3+, 1.5 %Yb3+ phosphors were fabricated, offering a highly promising source of invisible light. These results demonstrate the wide-ranging potential applications of this novel, high thermal stability, and ultra-broad NIR emitting fluorescent phosphor.

2.
Phys Rev E ; 106(5-1): 054215, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36559373

RESUMO

The statistical properties of wave chaotic systems of varying dimensionalities and realizations have been studied extensively. These systems are commonly characterized by the statistics of the eigenmode spacings and the statistics of the eigenfunctions. Here, we propose photonic crystal (PC) defect waveguide graphs as a physical setting for chaotic graph studies. Photonic crystal waveguides possess a dispersion relation for the propagating modes, which is engineerable. Graphs constructed by joining these waveguides possess junctions and bends with distinct scattering properties. We present numerically determined statistical properties of an ensemble of such PC graphs including both eigenfunction amplitude and eigenmode-spacing studies. Our proposed system is compatible with silicon nanophotonic technology and opens chaotic graph studies to a new community of researchers.

3.
Phys Rev E ; 101(2-1): 022201, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168697

RESUMO

The statistics of the scattering of waves inside single ray-chaotic enclosures have been successfully described by the random coupling model (RCM). We expand the RCM to systems consisting of multiple complex ray-chaotic enclosures with various coupling scenarios. The statistical properties of the model-generated quantities are tested against measured data of electrically large multicavity systems of various designs. The statistics of model-generated transimpedance and induced voltages on a load impedance agree well with the experimental results. The RCM coupled chaotic enclosure model is general and can be applied to other physical systems, including coupled quantum dots, disordered nanowires, and short-wavelength electromagnetic and acoustic propagation through rooms in buildings, aircraft, and ships.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA