Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Chem Sci ; 15(17): 6410-6420, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699269

RESUMO

The application of thermally activated delay fluorescence (TADF) emitters in the orange-red regime usually suffers from the fast non-radiative decay of emissive singlet states (kSNR), leading to low emitting efficiency in corresponding organic light-emitting diode (OLED) devices. Although kSNR has been quantitatively described by energy gap law, how ultrafast molecular motions are associated with the kSNR of TADF emitters remains largely unknown, which limits the development of new strategies for improving the emitting efficiency of corresponding OLED devices. In this work, we employed two commercial TADF emitters (TDBA-Ac and PzTDBA) as a model system and attempted to clarify the relationship between ultrafast excited-state structural relaxation (ES-SR) and kSNR. Spectroscopic and theoretical investigations indicated that S1/S0 ES-SR is directly associated with promoting vibrational modes, which are considerably involved in electronic-vibrational coupling through the Huang-Rhys factor, while kSNR is largely affected by the reorganization energy of the promoting modes. By restraining S1/S0 ES-SR in doping films, the kSNR of TADF emitters can be greatly reduced, resulting in high emitting efficiency. Therefore, by establishing the connection among S1/S0 ES-SR, promoting modes and kSNR of TADF emitters, our work clarified the key role of external structural restraint for achieving high emitting efficiency in TADF-based OLED devices.

2.
Anal Chem ; 96(16): 6356-6365, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38588440

RESUMO

Renal fibrosis poses a significant threat to individuals suffering from chronic progressive kidney disease. Given the absence of effective medications for treating renal fibrosis, it becomes crucial to assess the extent of fibrosis in real time and explore the development of novel drugs with substantial therapeutic benefits. Due to the accumulation of renal tissue damage and the uncontrolled deposition of fibrotic matrix during the course of the disease, there is an increase in viscosity both intracellularly and extracellularly. Therefore, a viscosity-sensitive near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging probe, BDP-KY, was developed to detect aberrant changes in viscosity during fibrosis. Furthermore, BDP-KY has been applied to screen the effective components of herbal medicine, rhubarb, resulting in the identification of potential antirenal fibrotic compounds such as emodin-8-glucoside and chrysophanol 8-O-glucoside. Ultrasound, PA, and NIRF imaging of a unilateral uretera obstruction mice model show that different concentrations of emodin-8-glucoside and chrysophanol 8-O-glucoside effectively reduce viscosity levels during the renal fibrosis process. The histological results showed a significant decrease in fibrosis factors α-smooth muscle actin and collagen deposition. Combining these findings with their pharmacokinetic characteristics, these compounds have the potential to fill the current market gap for effective antirenal fibrosis drugs. This study demonstrates the potential of BDP-KY in the evaluation of renal fibrosis, and the two identified active components from rhubarb hold great promise for the treatment of renal fibrosis.

3.
Chemistry ; : e202400046, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619364

RESUMO

Förster resonance energy transfer (FRET) has been widely applied in fluorescence imaging, sensing and so on, while developing useful strategy of boosting FRET efficiency becomes a key issue that limits the application. Except optimizing spectral properties, promoting orientation factor (κ2) has been well discussed but rarely utilized for boosting FRET. Herein, we constructed binary nano-assembling of two thermally activated delayed fluorescence (TADF) emitters (2CzPN and DMAC-DPS) with J-type aggregate of cyanine dye (C8S4) as doping films by taking advantage of their electrostatic interactions. Time-resolved spectroscopic measurements indicated that 2CzPN/Cy-J films exhibit an order of magnitude higher kFRET than DMAC-DPS/Cy-J films. Further quantitative analysing on kFRET and kDET indicated higher orientation factor (κ2) in 2CzPN/Cy-J films play a key role for achieving fast kFRET, which was subsequently confirmed by anisotropic measurements. Corresponding DFT/TDDFT calculation revealed strong "two-point" electrostatic anchoring in 2CzPN/Cy-J films that is responsible for highly orientated transitions. We provide a new strategy for boosting FRET in nano-assemblies, which might be inspired for designing FRET-based devices of sensing, imaging and information encryption.

4.
Med ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38663402

RESUMO

BACKGROUND: Ischemic stroke is a major cause of worldwide death and disability, with recombinant tissue plasminogen activator being the sole effective treatment, albeit with a limited treatment window. The cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) pathway is emerging as the major DNA-sensing pathway to invoke immune responses in neuroinflammatory disorders. METHODS: By performing a series of neurobehavioral assessments, electrophysiological analysis, high-throughput sequencing, and cell-based assays based on the transient middle cerebral artery occlusion (tMCAO) mouse stroke model, we examined the effects and underlying mechanisms of genetic and pharmacological inhibition of the cGAS-STING pathway on long-term post-stroke neurological functional outcomes. FINDINGS: Blocking the cGAS-STING pathway, even 3 days after tMCAO, significantly promoted functional recovery in terms of white matter structural and functional integrity as well as sensorimotor and cognitive functions. Mechanistically, the neuroprotective effects via inhibiting the cGAS-STING pathway were contributed not only by inflammation repression at the early stage of tMCAO but also by modifying the cell state of phagocytes to facilitate remyelination at the sub-acute phase. The activation of the cGAS-STING pathway significantly impeded post-stroke remyelination through restraining myelin debris uptake and degradation and hindering oligodendrocyte differentiation and maturation. CONCLUSIONS: Manipulating the cGAS-STING pathway has an extended treatment window in promoting long-term post-stroke functional recovery via facilitating remyelination in a mouse stroke model. Our results highlight the roles of the cGAS-STING pathway in aggregating stroke pathology and propose a new way for improving functional recovery after ischemic stroke. FUNDING: This work was primarily funded by the National Key R&D Program of China.

5.
Biol Reprod ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320203

RESUMO

Accumulating evidence indicates that paternally-derived miRNAs play a crucial role in the development of early embryos and are regarded as the key factor in the successful development of somatic cell cloned embryos. In our previous study, bta-miR-301a was found to be highly expressed in bovine sperm, and was delivered into oocytes during fertilization. In this study, bioinformatics, dual luciferase reporter assays, rescue experiments and gain- and loss-of-function experiments indicated that ACVR1 is the target gene of bta-miR-301a in early bovine embryos. By microinjecting bta-miR-301a mimic into embryos of parthenogenetic or somatic cell nuclear transfer, we observed that bta-miR-301a prolonged the first cleavage time of the embryos and increased the blastocyst formation rate. Thus, this study provides preliminary evidence that bta-miR-301a influences remodeling of the microfilament skeleton, prolongs the first cleavage time, and improves the developmental competence of embryos by negatively regulating ACVR1 translation.

6.
J Cancer ; 15(4): 1041-1052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38230224

RESUMO

Background: Dopamine receptors have been reported to be involved in pain, while the exact effects and mechanism in bone cancer pain have not been fully explored. Methods: Bone cancer pain model was created by implanting walker 256 mammary gland carcinoma into right tibia bone cavity. Primary cultured spinal neurons were used for in vitro evaluation. FLIPR, western-blot, immunofluorescence, and Co-IP were used to detect cell signaling pathway. Results: Our results indicated that spinal dopamine D1 receptor (D1DR) and spinal dopamine D2 receptor (D2DR) could form heteromers in TCI rats, and antagonizing spinal D1DR and D2DR reduced heteromers formation and alleviated TCI-induced bone cancer pain. Further results indicated that D1DR or D2DR antagonist induced antinociception in TCI rats could be reversed by D1DR, D2DR, and D1/D2DR heteromer agonists. And Gq, IP3, and PLC inhibitors also attenuated TCI-induced bone cancer pain. In vitro results indicated that D1DR or D2DR antagonist decreased the Ca2+ oscillations upregulated by D1DR, D2DR, and D1/D2DR heteromer agonists in activated primary cultured spinal neurons. Moreover, inhibition of D1/D2DR heteromers induced antinociception in TCI rats was partially mediated by the CaMKII and MAPKs pathway. In addition, a natural compound levo-Corydalmine (l-CDL), could inhibit D1/D2DR heteromers and attenuate bone cancer pain. Results: Inhibition of spinal D1/D2DR heteromers via l-CDL decreases excitability in spinal neurons, which might present new therapeutic strategy for bone cancer pain.

7.
Environ Sci Pollut Res Int ; 31(5): 7146-7166, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157182

RESUMO

China has implemented a series of environmental policies aimed at promoting green and innovative development by enterprises, to mitigate the adverse effects of environmental pollution. However, the frequent revision and introduction of environmental policies have also increased enterprises' perception of environmental uncertainty. This study, based on the upper echelon theory, uses data from listed companies in China from 2011 to 2021 to construct an index of perceived environmental uncertainty of firms through textual analysis and empirically examines its impact on green innovation and its potential mechanisms and boundary effects. The results show that, first, perceived environmental uncertainty of firms has a noteworthy inhibiting impact on green innovation. Second, mechanism analysis reveals that perceived environmental uncertainty of firms inhibits green innovation mainly in two ways: reducing the level of transparency in corporate information and reducing R&D investment. Third, the moderating effect finds that government subsidies can mitigate the inhibitory impact of perceived environmental uncertainty on green innovation among firms. In other words, higher government subsidies correspond to a reduced inhibitory effect of perceived environmental uncertainty on green innovation among firms. In addition, heterogeneity analysis shows that this inhibition is more obvious in non-state-owned enterprises, small enterprises, and enterprises in non-heavy pollution industries. This study holds immense practical significance for enterprises in harnessing the opportunities of green innovation amidst perceived environmental uncertainty, facilitating progressive green development, and ultimately fostering the harmonized growth of economic and environmental benefits for enterprises.


Assuntos
Política Ambiental , Desenvolvimento Sustentável , Humanos , China , Incerteza
8.
Nano Lett ; 24(1): 472-478, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38146703

RESUMO

Strain engineering has been used as an efficient method to modulate various properties of quantum materials and electronic devices. One may establish piezo effects based on a disciplined response to the strain in multifunctional nanosystems. Inspired by a recent theoretical proposal on the interesting piezomagnetism and C-paired valley polarization in the V2Se2O monolayer, we predict a stable altermagnetic Janus monolayer V2SeTeO using density functional theory calculations. It exhibits a novel "multipiezo" effect combining piezoelectricity, piezovalley, and piezomagnetism. Most interestingly, the valley polarization and the net magnetization under strain in V2SeTeO exceed these in V2Se2O, along with the additional large piezoelectric coefficient. The "multipiezo" effect makes Janus monolayer V2SeTeO as a tantalizing material for potential applications in nanoelectronics, optoelectronics, spintronics, and valleytronics.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38127247

RESUMO

Uric acid is the final metabolite in humans. High level of uric acid chronically induces urate deposition, aggravates kidney damage, and concomitantly causes an increase in inflammatory factors. Alleviating acute inflammation and decreasing uric acid levels are the key points in the treatment of inflammatory diseases associated with high uric acid. However, a drug delivery system that combines anti-inflammatory and uric acid reduction functions at the same time remains a challenge to be settled. Here, we designed a nanocrystal-based co-delivery platform, IND Nplex, characterized by loading of indomethacin (IND) and uricase. Compared with free IND or uricase, IND Nplex possessed a better anti-inflammatory effect by restraining the release of inflammation-related factors in vitro. In addition, pharmacokinetic and biodistribution studies revealed that IND Nplex significantly prolonged the retention time in vivo and was more concentrated in the kidney. In acute gouty arthritis model rats, IND Nplex markedly relieved ankle joint swelling and mitigated synovial inflammation. In acute kidney injury model rats, IND Nplex indicated better biocompatibility and significant amelioration of renal fibrosis. Moreover, IND Nplex showed the effect of anti-inflammatory and improved renal function via determination of inflammatory factors and biochemical markers in the serum and kidney. In conclusion, these results indicate that IND Nplex exerts anti-inflammatory activity and uric acid-lowering effect and could become a promising candidate for the treatment of uric acid-related diseases. In this study, a stable neutral co-delivery platform (IND Nplex) was fabricated by using a co-delivery strategy, allowing for a combination of the anti-inflammation drug IND and the metabolic enzyme uricase. IND Nplex showed a good therapeutic effect on rats with acute gouty arthritis or acute kidney injury due to the dual effects of anti-inflammatory and uric acid lowering. This platform provided a novel strategy for high uric acid-related illnesses.

10.
Adv Sci (Weinh) ; 10(33): e2303926, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37870188

RESUMO

The hydroxyl radical (•OH) is shown to play a crucial role in the occurrence and progression of acute kidney injury (AKI). Therefore, the development of a robust •OH probe holds great promise for the early diagnosis of AKI, high-throughput screening (HTS) of natural protectants, and elucidating the molecular mechanism of intervention in AKI. Herein, the design and synthesis of an activatable fluorescent/photoacoustic (PA) probe (CDIA) for sensitive and selective imaging of •OH in AKI is reported. CDIA has near-infrared fluorescence/PA channels and fast activation kinetics, enabling the detection of the onset of •OH in an AKI model. The positive detection time of 12 h using this probe is superior to the 48-hour detection time for typical clinical assays, such as blood urea nitrogen and serum creatinine detection. Furthermore, a method is established using CDIA for HTS of natural •OH inhibitors from herbal medicines. Puerarin is screened out by activating the Sirt1/Nrf2/Keap1 signaling pathway to protect renal cells in AKI. Overall, this work provides a versatile and dual-mode tool for illuminating the •OH-related pathological process in AKI and screening additional compounds to prevent and treat AKI.


Assuntos
Injúria Renal Aguda , Corantes Fluorescentes , Humanos , Radical Hidroxila/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Ensaios de Triagem em Larga Escala , Iluminação , Fator 2 Relacionado a NF-E2/metabolismo , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/metabolismo , Rim/metabolismo
11.
J Phys Chem Lett ; 14(43): 9665-9676, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37870971

RESUMO

The emerging nitrogen-embedded multiple resonance (MR) emitters with an indolo[3,2,1-jk] carbazole (ICz) unit have exhibited promising performance for high-resolution organic light-emitting diode (OLED) devices, while the underlying photophysics has been rarely reported. In this work, the optical spectra, color purity, and emitting efficiency of ICz-based MR emitters were investigated by using electronic structure and thermal vibration correlation function (TVCF) calculations. Unlike B-N MR emitters, the high color purity of investigated ICz-based MR emitters was mainly contributed by considerable structural rigidity, which also greatly affects the radiative decay rate and fluorescence quantum yield of the S1 state. For the majority of investigated emitters, potential reverse intersystem crossing (RISC) channels (T1 → S1 and T2 → S1) are limited by thermally inaccessible ΔEST* or insufficient spin-orbital coupling (SOC), which can be distinguished by the calculated temperature-dependent RISC rate pattern. We provided a systematic photophysical picture for ICz-based MR emitters that might be interesting for the OLED design and application community.

12.
Oncol Lett ; 26(4): 460, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37745980

RESUMO

The tumor microenvironment (TME) and Warburg effect are critical for the regulation of tumor metastasis. The monocarboxylate transporter (MCT) family members, particularly MCT4, which is encoded by the solute carrier family 16 member 3 gene, play an important role in the regulation of the TME and mediation of the Warburg effect by transporting lactate out of cancer cells. Migration and invasion are two key features of metastasis. Few studies have investigated the mechanism by which MCT4 promotes cell migration, and the suggested mechanisms by which MCT4 promotes migration vary in different tumor cell models. The purpose of the present study was to use non-cancerous cells as a research model to investigate the specific mechanism underlying the promotion of migration by MCT4. In a previous study, murine L929 cells overexpressing human MCT4 (MCT4-L929 cells) were generated and MCT4 was demonstrated to promote the migration and invasion of these non-cancerous cells. In the present study, MCT4-L929 cells and control-L929 cells were used to investigate the potential pathways and mechanisms through which MCT4 promotes cell migration. RNA sequencing analysis revealed 872 differentially expressed genes, comprising 337 and 535 upregulated and downregulated genes, respectively, in the MCT4-L929 cells. Reverse transcription-quantitative analysis and western blotting revealed that MCT4 overexpression increased the transcription and protein levels of insulin-like growth factor 1 (IGF1). In a wound healing assay, the migration of exogenous mouse IGF1-treated control-L929 cells was similar to that of MCT4-L929 cells. Additionally, the inhibition of IGF1 receptor (IGF1R) or serum/glucocorticoid regulated kinase 1 (SGK1), a downstream protein in the IGF1 and phosphoinositide 3-kinase PI3K regulatory subunit 3 (PIK3R3) pathways, in MCT4-L929 cells mitigated the cell migration-promoting effect of MCT4. These novel findings suggest that MCT4 may promote the migration of L929 fibroblast cells via activation of the IGF1/IGF1R/PIK3R3/SGK1 axis.

13.
Molecules ; 28(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37764334

RESUMO

The emergence of multidrug-resistant bacteria has severely increased the burden on the global health system, and such pathogenic infections are considered a great threat to human well-being. Antimicrobial peptides, due to their potent antimicrobial activity and low possibility of inducing resistance, are increasingly attracting great interest. Herein, a novel dermaseptin peptide, named Dermaseptin-SS1 (SS1), was identified from a skin-secretion-derived cDNA library of the South/Central American tarsier leaf frog, Phyllomedusa tarsius, using a 'shotgun' cloning strategy. The chemically synthesized peptide SS1 was found to be broadly effective against Gram-negative bacteria with low haemolytic activity in vitro. A designed synthetic analogue of SS1, named peptide 14V5K, showed lower salt sensitivity and more rapid bacteria killing compared to SS1. Both peptides employed a membrane-targeting mechanism to kill Escherichia coli. The antiproliferative activity of SS1 and its analogues against lung cancer cell lines was found to be significant.


Assuntos
Peptídeos Antimicrobianos , Tarsiidae , Humanos , Animais , Anuros , Pele , Escherichia coli
14.
World J Surg Oncol ; 21(1): 273, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37644549

RESUMO

BACKGROUND: Using grip strength as a predictor of nutritional risk and early ambulation for gastrointestinal tumor surgery and determining its critical value have not been reported. This study was designed to explore the influencing factors of early postoperative ambulation ability for patients with gastrointestinal tumors who underwent laparoscopic surgery. METHODS: Four-hundred twenty-seven patients with gastrointestinal tumors who underwent laparoscopic surgery at three tertiary A hospitals in Beijing were prospectively enrolled. Subsequently, logistic regression analysis was conducted to determine the independent predictors of early postoperative ambulation. Logistic regression analyses for the different gender were also performed. In addition, the effectiveness of preoperative grip strength measurement in nutritional risk assessment was analyzed by using nutritional risk score 2002 (NRS 2002) as a control. RESULTS: The included cases were comprised of 283 male and 144 female patients, with an age of 59.35 ± 11.70 years. Gender, preoperative grip strength, operative time, and number of indwelling tubes were independent predictors of early postoperative ambulation. In the male group, lower preoperative grip strength and more indwelling tubes were independent risk factors for early postoperative ambulation. In the female group, lower preoperative grip strength and extended operating time were independent risk factors. Moreover, preoperative grip strength (male < 32 kg, female < 21 kg) can be used as a risk predictor for both preoperative nutritional risk and early postoperative ambulation. CONCLUSIONS: As a simple and objective measure of muscle strength, grip strength measurement is expected to be an effective predictor for both early postoperative ambulation ability and nutritional status of patients.


Assuntos
Neoplasias Gastrointestinais , Laparoscopia , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Deambulação Precoce , Estudos Prospectivos , Neoplasias Gastrointestinais/cirurgia , Força da Mão , Laparoscopia/efeitos adversos
15.
Chem Biodivers ; 20(9): e202300556, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37469185

RESUMO

In this article, two undescribed amides (1-2) with an unusual (2-formyl-5-hydroxymethyl)pyrroyl-butylamine moiety were obtained from the Physochlainae Radix. Comprehensive spectroscopic studies, including NMR and HR-ESI-MS, coupling with spectroscopic data comparisons were used to determine structures. Anti-inflammatory assay results showed that new amides possessed significant inhibitory activities of the NO production of LPS-induced RAW 264.7 cells, with IC50 values of 17.52±1.68 µM and 20.37±2.42 µM, respectively.


Assuntos
Amidas , Anti-Inflamatórios , Animais , Camundongos , Amidas/farmacologia , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Estrutura Molecular
16.
Adv Nanobiomed Res ; 3(3): 2200106, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37266328

RESUMO

Diseases of the pulmonary alveolus, such as pulmonary fibrosis, are leading causes of morbidity and mortality, but exceedingly few drugs are developed for them. A major reason for this gap is that after inhalation, drugs are quickly whisked away from alveoli due to their high perfusion. To solve this problem, the mechanisms by which nano-scale drug carriers dramatically improve lung pharmacokinetics using an inhalable liposome formulation containing nintedanib, an antifibrotic for pulmonary fibrosis, are studied. Direct instillation of liposomes in murine lung increases nintedanib's total lung delivery over time by 8000-fold and lung half life by tenfold, compared to oral nintedanib. Counterintuitively, it is shown that pulmonary surfactant neither lyses nor aggregates the liposomes. Instead, each lung compartment (alveolar fluid, alveolar leukocytes, and parenchyma) elutes liposomes over 24 h, likely serving as "drug depots." After deposition in the surfactant layer, liposomes are transferred over 3-6 h to alveolar leukocytes (which take up a surprisingly minor 1-5% of total lung dose instilled) in a nonsaturable fashion. Further, all cell layers of the lung parenchyma take up liposomes. These and other mechanisms elucidated here should guide engineering of future inhaled nanomedicine for alveolar diseases.

17.
Int J Biol Macromol ; 245: 125540, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37355063

RESUMO

Gardenia jasminoides (GJ) is a classic edible medicine in China of which the fruit has been proved to alleviate liver damage. We hypothesized whether polysaccharide in the fruit could have comparable bioactivity. To address this, a novel polysaccharide GJE0.2-2, is purified from the fruit of Gardenia jasminoides. Indeed, GJE0.2-2 may attenuate CCl4-induced liver fibrosis in mice and impede the expression of critical fibrogenesis associated molecules such as α-SMA, FN1, and Collagen I induced by TGF-ß in human hepatic stellate LX-2 cells. Mechanism studies suggest that this bioactivity may be implicated in TLR4/NF-κB signaling pathway via directly binding to TLR4. The structure characterization shows that the backbone of this polysaccharide is mainly composed of galacturonic acid with minor rhamnose, branched with galactose and arabinose, galacturonic acid, and esterified hexenuronic acid (HexpA). These findings provide evidence for a novel pectin-linked polysaccharide-based new drug candidate development for liver fibrosis therapy.

18.
Phenomics ; 3(3): 268-284, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325710

RESUMO

The gut microbiota refers to the gross collection of microorganisms, estimated trillions of them, which reside within the gut and play crucial roles in the absorption and digestion of dietary nutrients. In the past decades, the new generation 'omics' (metagenomics, transcriptomics, proteomics, and metabolomics) technologies made it possible to precisely identify microbiota and metabolites and describe their variability between individuals, populations and even different time points within the same subjects. With massive efforts made, it is now generally accepted that the gut microbiota is a dynamically changing population, whose composition is influenced by the hosts' health conditions and lifestyles. Diet is one of the major contributors to shaping the gut microbiota. The components in the diets vary in different countries, religions, and populations. Some special diets have been adopted by people for hundreds of years aiming for better health, while the underlying mechanisms remain largely unknown. Recent studies based on volunteers or diet-treated animals demonstrated that diets can greatly and rapidly change the gut microbiota. The unique pattern of the nutrients from the diets and their metabolites produced by the gut microbiota has been linked with the occurrence of diseases, including obesity, diabetes, nonalcoholic fatty liver disease, cardiovascular disease, neural diseases, and more. This review will summarize the recent progress and current understanding of the effects of different dietary patterns on the composition of gut microbiota, bacterial metabolites, and their effects on the host's metabolism.

19.
Front Public Health ; 11: 1111889, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089492

RESUMO

Background and aims: Internet gaming disorder (IGD) and aggression (AG) are widespread phenomena around the world. Numerous studies have explored the relationship between the two but findings from such studies are inconsistent. The meta-analysis aimed to evaluate the relationship between IGD and AG as well as identify the variables moderating the relationship. Method: Studies investigating the relationship between IGD and AG were searched using selected terms to identify studies published from 1999 to 2022 on CNKI, Wanfang Data, Chongqing VIP Information Co., Ltd. (VIP), Baidu scholar, ProQuest dissertations, Taylor & Francis, Springer, Web of Science, Google Scholar, Elsevier Science (Science Direct), EBSCO, and PsycINFO. The identified studies were pooled and analyzed. Results: A total of 30 samples comprising 20,790 subjects were identified. Results showed that there was a moderate relationship between IGD and AG (r = 0.300, 95%CI [0.246, 0.353]). Moderator analysis revealed that the relationship between IGD and AG was moderated by the region, age, and survey year. Conclusion: This meta-analysis indicated that people with a higher level of IGD might show more aggression, and people with more aggression might have a higher level of IGD. The correlation coefficient between IGD and AG was significantly higher in Asia than in Europe, higher in primary school than in middle school and university, and higher by increasing year. Overall, our findings provide a basis for developing prevention and intervention strategies against IGD and AG. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022375267, 42022375267.


Assuntos
Comportamento Aditivo , Jogos de Vídeo , Humanos , Adulto Jovem , Adolescente , Transtorno de Adição à Internet , Comportamento Aditivo/epidemiologia , Agressão , Inquéritos e Questionários
20.
Int J Pharm ; 639: 122951, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37059242

RESUMO

Thorough characterization of the plasma pharmacokinetics (PK) is a critical step in clinical development of novel therapeutics and is routinely performed for small molecules and biologics. However, there is a paucity of even basic characterization of PK for nanoparticle-based drug delivery systems. This has led to untested generalizations about how nanoparticle properties govern PK. Here, we present a meta-analysis of 100 nanoparticle formulations following IV administration in mice to identify any correlations between four PK parameters derived by non-compartmental analysis (NCA) and four cardinal properties of nanoparticles: PEGylation, zeta potential, size, and material. There was a statistically significant difference between the PK of particles stratified by nanoparticle properties. However, single linear regression between these properties and PK parameters showed poor predictability (r2 < 0.10 for all analyses), while multivariate regressions showed improved predictability (r2 > 0.38, except for t1/2). This suggests that no single nanoparticle property alone is even moderately predictive of PK, while the combination of multiple nanoparticle features does provide moderate predictive power. Improved reporting of nanoparticle properties will enable more accurate comparison between nanoformulations and will enhance our ability to predict in vivo behavior and design optimal nanoparticles.


Assuntos
Nanopartículas , Animais , Camundongos , Composição de Medicamentos , Farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA