Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Cancer Metab ; 12(1): 19, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38951899

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease without meaningful therapeutic options beyond the first salvage therapy. Targeting PDAC metabolism through amino acid restriction has emerged as a promising new strategy, with asparaginases, enzymes that deplete plasma glutamine and asparagine, reaching clinical trials. In this study, we investigated the anti-PDAC activity of the asparaginase formulation Pegcrisantaspase (PegC) alone and in combination with standard-of-care chemotherapeutics. METHODS: Using mouse and human PDAC cell lines, we assessed the impact of PegC on cell proliferation, cell death, and cell cycle progression. We further characterized the in vitro effect of PegC on protein synthesis as well as the generation of reactive oxygen species and levels of glutathione, a major cellular antioxidant. Additional cell line studies examined the effect of the combination of PegC with standard-of-care chemotherapeutics. In vivo, the tolerability and efficacy of PegC, as well as the impact on plasma amino acid levels, was assessed using the C57BL/6-derived KPC syngeneic mouse model. RESULTS: Here we report that PegC demonstrated potent anti-proliferative activity in a panel of human and murine PDAC cell lines. This decrease in proliferation was accompanied by inhibited protein synthesis and decreased levels of glutathione. In vivo, PegC was tolerable and effectively reduced plasma levels of glutamine and asparagine, leading to a statistically significant inhibition of tumor growth in a syngeneic mouse model of PDAC. There was no observable in vitro or in vivo benefit to combining PegC with standard-of-care chemotherapeutics, including oxaliplatin, irinotecan, 5-fluorouracil, paclitaxel, and gemcitabine. Notably, PegC treatment increased tumor expression of asparagine and serine biosynthetic enzymes. CONCLUSIONS: Taken together, our results demonstrate the potential therapeutic use of PegC in PDAC and highlight the importance of identifying candidates for combination regimens that could improve cytotoxicity and/or reduce the induction of resistance pathways.

2.
Cancer Causes Control ; 35(3): 417-427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37812336

RESUMO

PURPOSE: While community engagement has been a longstanding aspect of cancer-relevant research in social and behavioral sciences, it is far less common in basic/translational/clinical research. With the National Cancer Institute's incorporation of Community Outreach and Engagement into the Cancer Center Support Grant guidelines, successful models are desirable. We report on a pilot study supported by the University of Maryland Greenebaum Comprehensive Cancer Center (UMGCCC), that used a community-engaged, data-driven process to inform a pre-clinical study of the impact of antioxidants on the efficacy of platinum-based chemotherapeutics. METHODS: We conducted a survey of UMGCCC catchment area residents (n = 120) to identify commonly used antioxidants. We then evaluated the effect of individually combining commonly used antioxidants from the survey (vitamin C, green tea, and melatonin) with platinum agents in models of non-small cell lung cancer (A549), colon adenocarcinoma (SW620) and head and neck squamous cell carcinoma (FaDu). RESULTS: In vitro, the anti-neoplastic activity of each chemotherapy was not potentiated by any of the antioxidants. Instead, when combined at fixed ratios, most antioxidant-chemotherapy combinations were antagonistic. In vivo, addition of antioxidants did not improve chemotherapeutic efficacy and in a FaDu-tumor bearing model, cisplatin-mediated tumor growth inhibition was significantly impeded by the addition of epigallocatechin gallate, the main antioxidant in green tea. CONCLUSION: These initial findings do not support addition of antioxidant supplementation to improve platinum-based chemotherapeutic efficacy. This study's approach can serve as a model of how to bring together the two seemingly discordant areas of basic research and community engagement.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias do Colo , Neoplasias Pulmonares , Humanos , Antioxidantes/farmacologia , Projetos Piloto , Neoplasias do Colo/tratamento farmacológico , Chá
3.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5701-5706, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114166

RESUMO

The application of new-generation information technologies such as big data, the internet of things(IoT), and cloud computing in the traditional Chinese medicine(TCM)manufacturing industry is gradually deepening, driving the intelligent transformation and upgrading of the TCM industry. At the current stage, there are challenges in understanding the extraction process and its mechanisms in TCM. Online detection technology faces difficulties in making breakthroughs, and data throughout the entire production process is scattered, lacking valuable mining and utilization, which significantly hinders the intelligent upgrading of the TCM industry. Applying data-driven technologies in the process of TCM extraction can enhance the understanding of the extraction process, achieve precise control, and effectively improve the quality of TCM products. This article analyzed the technological bottlenecks in the production process of TCM extraction, summarized commonly used data-driven algorithms in the research and production control of extraction processes, and reviewed the progress in the application of data-driven technologies in the following five aspects: mechanism analysis of the extraction process, process development and optimization, online detection, process control, and production management. This article is expected to provide references for optimizing the extraction process and intelligent production of TCM.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Controle de Qualidade , Big Data , Algoritmos
4.
Front Plant Sci ; 14: 1293958, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116155

RESUMO

Salt stress detrimentally impacts plant growth, imperiling crop yield and food quality. Ameliorating plant resilience and productivity in saline environments is critical for global food security. Here, we report the positive effect of Arthrospira (Spirulina) on plant growth and salt tolerance in Arabidopsis and sweet sorghum. Arthrospira application greatly promotes seed germination and seedling growth in both species under salt stress conditions in a dosage-dependent manner. Application of 6 mg Arthrospira per plate significantly enhances K+/Na+ equilibrium and reactive oxygen species (ROS) scavenging in Arabidopsis, reducing salt-induced toxicity. The primary root length, survival rate, chlorophyll content, photosynthesis, plant height, biomass and yield were all improved in both species. Concurrently, Arthrospira demonstrated the synthesis of compatible solutes, such as trehalose (Tre) and glucosylglycerol (GG), contributing to heightened stress tolerance when co-cultivated with Arabidopsis on plates. Transcriptome analysis revealed dramatic up-/down- regulation of genes involved in phytohormone signal transduction, chlorophyll and photosynthesis metabolism, and phenylpropanoid metabolism in Arabidopsis. Furthermore, the application of Arthrospira exerted a positive influence on the rhizosphere bacteriome structure in sweet sorghum, crucial for nutrient cycling and soil health enhancement. Our findings uncovered the underlying mechanisms of algae-plants interaction in saline soil, proposing strategies to enhance crop productivity and soil quality, thereby addressing the urgent need for sustainable agriculture practices to mitigate salinity's repercussions amidst climate change challenges.

5.
Front Bioeng Biotechnol ; 11: 1282314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941722

RESUMO

Aspergillus niger is the main industrial workhorse for global citric acid production. This fungus has complex sensing and signaling pathways to respond to environmental nutrient fluctuations. As the preferred primary carbon source, glucose also acts as a critical signal to trigger intracellular bioprocesses. Currently, however, there is still a knowledge gap in systems-level understanding of metabolic and cellular responses to this vital carbon source. In this study, we determined genome-wide transcriptional changes of citric acid-producing Aspergillus niger in response to external glucose gradient. It demonstrated that external glucose fluctuation led to transcriptional reprogramming of many genes encoding proteins involved in fundamental cellular process, including ribosomal biogenesis, carbon transport and catabolism, glucose sensing and signaling. The major glucose catabolism repressor creA maintained a stable expression independent of external glucose, while creB and creD showed significant downregulation and upregulation by the glucose increase. Notably, several high-affinity glucose transporters encoding genes, including mstA, were greatly upregulated when glucose was depleted, while the expression of low-affinity glucose transporter mstC was glucose-independent, which showed clear concordance with their protein levels detected by in situ fluorescence labeling assay. In addition, we also observed that the citric acid exporter cexA was observed to be transcriptionally regulated by glucose availability, which was correlated with extracellular citric acid secretion. These discoveries not only deepen our understanding of the transcriptional regulation of glucose but also shed new light on the adaptive evolutionary mechanism of citric acid production of A. niger.

6.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175747

RESUMO

OsMADS1 plays a vital role in regulating floret development and grain shape, but whether it regulates rice grain quality still remains largely unknown. Therefore, we used comprehensive molecular genetics, plant biotechnology, and functional omics approaches, including phenotyping, mapping-by-sequencing, target gene seed-specific RNAi, transgenic experiments, and transcriptomic profiling to answer this biological and molecular question. Here, we report the characterization of the 'Oat-like rice' mutant, with poor grain quality, including chalky endosperms, abnormal morphology and loose arrangement of starch granules, and lower starch content but higher protein content in grains. The poor grain quality of Oat-like rice was found to be caused by the mutated OsMADS1Olr allele through mapping-by-sequencing analysis and transgenic experiments. OsMADS1 protein is highly expressed in florets and developing seeds. Both OsMADS1-eGFP and OsMADS1Olr-eGFP fusion proteins are localized in the nucleus. Moreover, seed-specific RNAi of OsMADS1 also caused decreased grain quality in transgenic lines, such as the Oat-like rice. Further transcriptomic profiling between Oat-like rice and Nipponbare grains revealed that OsMADS1 regulates gene expressions and regulatory networks of starch and storage protein metabolisms in rice grains, hereafter regulating rice quality. In conclusion, our results not only reveal the crucial role and preliminary mechanism of OsMADS1 in regulating rice grain quality but also highlight the application potentials of OsMADS1 and the target gene seed-specific RNAi system in improving rice grain quality by molecular breeding.


Assuntos
Oryza , Amido , Amido/genética , Amido/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Endosperma/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas
7.
Oral Dis ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36989132

RESUMO

OBJECTIVES: Gnathodiaphyseal dysplasia (GDD; OMIM#166260) is a rare skeletal genetic disorder characterized by sclerosis of tubular bones and cemento-osseous lesions in mandibles. TMEM16E/ANO5 gene mutations have been identified in patients with GDD. Here, Ano5 knockout (Ano5-/- ) mice with enhanced osteoblastogenesis were used to investigate whether Ano5 disruption affects osteoclastogenesis. SUBJECTS AND METHODS: The maturation of osteoclasts, formation of F-actin ring and bone resorption were detected by immunohistochemistry, TRAP, phalloidin staining and Coming Osteo assays. The expression of osteoclast-related factors was measured by qRT-PCR. Early signaling pathways were verified by western blot. RESULTS: Ano5-/- mice exhibited inhibitory formation of multinucleated osteoclasts with a reduction of TRAP activity. The expression of Nfatc1, c-Fos, Trap, Ctsk, Mmp9, Rank and Dc-stamp was significantly decreased in bone tissues and bone marrow-derived macrophages (BMMs) of Ano5-/- mice. Ano5-/- osteoclasts manifested disrupted actin ring and less mineral resorption. RANKL-induced early signaling pathways were suppressed in Ano5-/- osteoclasts and Ano5 knockdown RAW264.7 cells. Moreover, the inhibitory effects of NF-κB signalling pathway on osteoclastogenesis were partially attenuated with NF-κB signalling activator. CONCLUSIONS: Ano5 deficiency impairs osteoclastogenesis, which leads to enhanced osteogenic phenotypes mediated by bone homeostasis dysregulation.

8.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499349

RESUMO

Salt-alkali stress threatens the resilience to variable environments and thus the grain yield of rice. However, how rice responds to salt-alkali stress at the molecular level is poorly understood. Here, we report isolation of a novel salt-alkali-tolerant rice (SATR) by screening more than 700 germplasm accessions. Using 93-11, a widely grown cultivar, as a control, we characterized SATR in response to strong salt-alkali stress (SSAS). SATR exhibited SSAS tolerance higher than 93-11, as indicated by a higher survival rate, associated with higher peroxidase activity and total soluble sugar content but lower malonaldehyde accumulation. A transcriptome study showed that cell wall biogenesis-related pathways were most significantly enriched in SATR relative to 93-11 upon SSAS. Furthermore, higher induction of gene expression in the cell wall matrix polysaccharide biosynthesis pathway, coupled with higher accumulations of hemicellulose and pectin as well as measurable physio-biochemical adaptive responses, may explain the strong SSAS tolerance in SATR. We mapped SSAS tolerance to five genomic regions in which 35 genes were candidates potentially governing SSAS tolerance. The 1,4-ß-D-xylan synthase gene OsCSLD4 in hemicellulose biosynthesis pathway was investigated in details. The OsCSLD4 function-disrupted mutant displayed reduced SSAS tolerance, biomass and grain yield, whereas the OsCSLD4 overexpression lines exhibited increased SSAS tolerance. Collectively, this study not only reveals the potential role of cell wall matrix polysaccharides in mediating SSAS tolerance, but also highlights applicable value of OsCSLD4 and the large-scale screening system in developing SSAS-tolerant rice.


Assuntos
Oryza , Oryza/metabolismo , Álcalis/metabolismo , Tolerância ao Sal/genética , Parede Celular/metabolismo , Polissacarídeos/metabolismo , Cloreto de Sódio/metabolismo
9.
Sensors (Basel) ; 22(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36501965

RESUMO

In the traditional peripheral-security-early-warning system, the endpoint detection and pattern recognition of the signals generated by the distributed optical fiber vibration sensors is completed step-by-step and in an orderly manner. The method by which these two processes may be placed end-to-end in a network model and processed simultaneously to improve work efficiency has increasingly become the focus of research. In this paper, the target detection algorithm combines the endpoint-detection and pattern-recognition processes of the vibration signal, which can not only quickly locate the start and end vibration positions of the signal but also accurately identify a certain type of signal. You Only Look Once v4 (YOLOv4) is one of the most advanced target detection algorithms, achieving the optimal balance of speed and accuracy. To reduce the complexity of the YOLOv4 model and solve the dataset's unbalanced sample classification problem, we use a deep separable convolution (DSC) network and a focal loss function to improve the YOLOv4 model. In this paper, the five kinds of signals collected in real-time are visualized as two different datasets in oscillograph and time-frequency diagrams as detection objects. According to the experimental results, we obtained 98.50% and 93.48% mean Average Precision (mAP) and 84.8 and 69.9 frames per second (FPS), respectively, which are improved compared to YOLOv4. Comparing the improved algorithm with other optical fiber vibration signal recognition algorithms, the mAP and FPS values were improved, and the detection speed was about 20 times faster than that of other algorithms. The improved algorithm in this paper can quickly and accurately identify the vibration signal of external intrusion, reduce the false-alarm rate of the early-warning system, and improve the real-time detection rate of the system while ensuring high recognition accuracy.


Assuntos
Fibras Ópticas , Vibração , Modalidades de Fisioterapia , Oscilometria , Algoritmos
10.
Front Oncol ; 12: 1035537, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578934

RESUMO

The impact of asparaginases on plasma asparagine and glutamine is well established. However, the effect of asparaginases, particularly those derived from Erwinia chrysanthemi (also called crisantaspase), on circulating levels of other amino acids is unknown. We examined comprehensive plasma amino acid panel measurements in healthy immunodeficient/immunocompetent mice as well as in preclinical mouse models of acute myeloid leukemia (AML) and pancreatic ductal adenocarcinoma (PDAC) using long-acting crisantaspase, and in an AML clinical study (NCT02283190) using short-acting crisantaspase. In addition to the expected decrease of plasma glutamine and asparagine, we observed a significant increase in plasma serine and glycine post-crisantaspase. In PDAC tumors, crisantaspase treatment significantly increased expression of serine biosynthesis enzymes. We then systematically reviewed clinical studies using asparaginase products to determine the extent of plasma amino acid reporting and found that only plasma levels of glutamine/glutamate and asparagine/aspartate were reported, without measuring other amino acid changes post-asparaginase. To the best of our knowledge, we are the first to report comprehensive plasma amino acid changes in mice and humans treated with asparaginase. As dysregulated serine metabolism has been implicated in tumor development, our findings offer insights into how leukemia/cancer cells may potentially overcome glutamine/asparagine restriction, which can be used to design future synergistic therapeutic approaches.

11.
Front Plant Sci ; 13: 970496, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36426156

RESUMO

Cold and drought stress are the two most severe abiotic stresses in alpine regions. Poa crymophila is widely grown in the Qinghai-Tibet Plateau with strong tolerance. Here, by profiling gene expression patterns and metabolomics-associated transcriptomics co-expression network, the acclimation of Poa crymophila to the two stresses was characterized. (1) The genes and metabolites with stress tolerance were induced by cold and drought, while those related with growth were inhibited, and most of them were restored faster after stresses disappeared. In particular, the genes for the photosynthesis system had strong resilience. (2) Additionally, cold and drought activated hypoxia and UV-B adaptation genes, indicating long-term life on the plateau could produce special adaptations. (3) Phenolamines, polyamines, and amino acids, especially N',N″,N'″-p-coumaroyl-cinnamoyl-caffeoyl spermidine, putrescine, and arginine, play key roles in harsh environments. Flexible response and quick recovery are strategies for adaptation to drought and cold in P. crymophila, accounting for its robust tolerance and resilience. In this study, we presented a comprehensive stress response profile of P. crymophila and provided many candidate genes or metabolites for future forage improvement.

12.
Sensors (Basel) ; 22(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015773

RESUMO

Because of the problem of low recognition accuracy in the recognition of intrusion vibration events by the distributed Sagnac type optical fiber sensing system, this paper combines the traditional optical fiber vibration signal recognition idea and the characteristics of automatic feature extraction by a convolutional neural network (CNN) to construct a new endpoint detection algorithm and a method of fusing multiple-scale features CNN to recognize fiber vibration signals. Firstly, a new endpoint detection algorithm combining spectral centroid and energy spectral entropy product is used to detect the vibration part of the original signal, which is used to improve the detection effect of endpoint detection. Then, CNNs of different scales are used to extract the multi-level and multi-scale features of the signal. Aiming at the problem of information loss in the pooling process, a new method of combining differential pooling features is used. Finally, a multi-layer perceptron (MLP) is used to recognize the extracted features. Experiments show that the method has an average recognition accuracy rate of 98.75% for the four types of vibration signals. Compared with traditional EMD and VMD pattern recognition and 1D-CNN methods, the accuracy of the optical fiber vibration signal recognition is higher.


Assuntos
Fibras Ópticas , Vibração , Algoritmos , Redes Neurais de Computação
13.
Biomed Res Int ; 2022: 5455593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309169

RESUMO

Background: Landoltia punctata can be used as renewable and sustainable biofuel feedstock because it can quickly accumulate high starch levels. ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed step during starch biosynthesis in higher plants. The heterotetrameric structure of plant AGPases comprises pairs of large subunits (LSs) and small subunits (SSs). Although several studies have reported on the high starch accumulation capacity of duckweed, no study has explored the underlying molecular accumulation mechanisms and their linkage with AGPase. Therefore, this study focused on characterizing the roles of different L. punctate AGPases. Methodology. Expression patterns of LpAGPs were determined through comparative transcriptome analyses, followed by coexpressing their coding sequences in Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, and Nicotiana tabacum. Results: Comparative transcriptome analyses showed that there are five AGPase subunits encoding cDNAs in L. punctata (LpAGPS1, LpAGPS2, LpAGPL1, LpAGPL2, and LpAGPL3). Nutrient starvation (distilled water treatment) significantly upregulated the expression of LpAGPS1, LpAGPL2, and LpAGPL3. Coexpression of LpAGPSs and LpAGPLs in Escherichia coli generated six heterotetramers, but only four (LpAGPS1/LpAGPL3, LpAGPS2/LpAGPL1, LpAGPS2/LpAGPL2, and LpAGPS2/LpAGPL3) exhibited AGPase activities and displayed a brownish coloration upon exposure to iodine staining. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays validated the interactions between LpAGPS1/LpAGPL2, LpAGPS1/LpAGPL3, LpAGPS2/LpAGPL1, LpAGPS2/LpAGPL2, and LpAGPS2/LpAGPL3. All the five LpAGPs were fusion-expressed with hGFP in Arabidopsis protoplasts, and their green fluorescence signals were uniformly localized in the chloroplast, indicating that they are plastid proteins. Conclusions: This study uncovered the cDNA sequences, structures, subunit interactions, expression patterns, and subcellular localization of AGPase. Collectively, these findings provide new insights into the molecular mechanism of fast starch accumulation in L. punctata.


Assuntos
Arabidopsis , Araceae , Arabidopsis/genética , Arabidopsis/metabolismo , Araceae/genética , DNA Complementar/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Amido/metabolismo
14.
Dent Mater J ; 41(3): 473-480, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35321973

RESUMO

The aim of this study was to evaluate the crosslinking effect of the radio-frequency atmospheric-pressure glow discharge (RF-APGD) plasma jet treatment on dentin collagen. The dentin collagen was treated by an RF-APGD plasma jet with the gas temperature of 4°C under different treatment times, while the control was a non-treatment group. The dentin collagen was characterized in terms of atomic force microscopy-based nanoindentation, differential scanning calorimeter, Raman analysis and X-ray photoelectron spectroscopy (XPS) measurement. The crosslinking effect of the plasma-treated dentin collagen was found compared to that of the control group. The elastic modulus and denaturation temperature of the dentin collagen after plasma treatment for 30 s were significantly higher than those in the control group (p<0.05). The RF-APGD plasma jet treatment can promote the crosslinking of the dentin collagen, which is of great significance to improve its mechanical and thermal stabilities.


Assuntos
Gases em Plasma , Pressão Atmosférica , Colágeno/química , Dentina/química , Módulo de Elasticidade , Gases em Plasma/química
15.
Bioengineered ; 13(1): 1162-1173, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35258410

RESUMO

LINC00472 is reported to play a role in suppressing tumors in cancers such as lung cancer and hepatocellular carcinoma, among others. We made investigations into the effects of LINC00472 in oral squamous cell carcinoma (OSCC) progression to explore the underlying molecular mechanisms. By qRT-PCR, we assessed the LINC00472 expression in OSCC tissues and cells and performed functional analysis to investigate how LINC00472/miR-455-3p/ELF3 impacts OSCC cell proliferation, apoptosis, and cell cycle. The role that LINC00472 plays in OSCC tumor growth was examined by establishing a xenograft model. Down-regulation of LINC00472 occurred in tissues and cells of an OSCC tumor. LINC00472 overexpression caused OSCC cell proliferation to be inhibited, cell apoptosis to be promoted, and cell cycle arrest to be induced. As a competing endogenous RNA (ceRNA), LINC00472 can block miR-455-3p function and further promote ELF3 expression. The overexpression of miR-455-3p or ELF3 knockdown was shown to be capable of reversing the anti-tumor effects of LINC00472 in OSCC. In vivo experiments confirmed the tumor-suppressing role of LINC00472 in the progression of OSCC. In short, we found that the novel LINC00472 inhibits OSCC growth via the miR-455-3p/ELF3 axis. LINC00472 and its targeted miR-455-3p/ELF3 axis may represent valuable targets for treating OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Bucais/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Fatores de Transcrição/metabolismo
16.
Microbiol Spectr ; 10(1): e0090721, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107347

RESUMO

Titanium (Ti) is an element beneficial to plant growth. Application of titanium to roots or leaves at low concentrations can improve crop yield and performance. However, the effect of titanium ions on the bulk soil microbial community of planted crops remains unclear. This study aimed to explore the effects of titanium on soil bacterial and fungal communities. Field surveys were conducted to determine the effect of titanium ions on bulk soil microbial communities in pitaya and grape plantations of Panzhihua and Xichang areas, respectively. Full-length 16S rRNA and internal transcribed spacer (ITS) amplicon sequencing were performed using PacBio Sequel to further explore the composition and structure of soil microbiota. The application of titanium ions significantly altered the composition and structure of soil microbiota. Root irrigation with titanium ions in pitaya gardens reduced the diversity of soil fungi and bacteria. However, the decline in bacterial diversity was not statistically significant. Meanwhile, foliar spray of titanium ions on grapes greatly reduced the soil microbial diversity. The bulk soil microbiota had a core of conserved taxa, and titanium ions significantly altered their relative abundances. Furthermore, the application of titanium increased the interaction network of soil fungi and bacteria compared with the control group. Thus, titanium ions potentially improve the stability of the soil microbial community. IMPORTANCE Pitaya and grape are important cash crops in the Panzhihua and Xichang areas, respectively, where they are well adapted. Titanium is a plant growth-promoting element, but the interaction between titanium and soil microorganisms is poorly understood. Titanium ions are still not widely used for growing pitaya and grape in the two regions. Thus, we investigated the effects of titanium ions on soil microbial communities of the two fruit crops in these two regions. Microbial diversity decreased, and the community structure changed; however, the addition of titanium ions enhanced cooccurrence relationships and improved the stability of the community. This study provides a basis for the importance of titanium ion application in crop cultivation.


Assuntos
Bactérias/isolamento & purificação , Cactaceae/crescimento & desenvolvimento , Fungos/isolamento & purificação , Microbiota , Microbiologia do Solo , Titânio/metabolismo , Vitis/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Cactaceae/metabolismo , Ecossistema , Fertilizantes/análise , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Solo/química , Titânio/análise , Vitis/metabolismo
17.
J Bone Miner Res ; 37(3): 515-530, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34841576

RESUMO

Gnathodiaphyseal dysplasia (GDD) is a rare autosomal dominant genetic disease characterized by the osteosclerosis of tubular bones and the formation of cemento-osseous lesions in mandibles. Although genetic mutations for GDD have been identified in the ANO5/TMEM16E gene, the cellular and molecular mechanisms behind the pathogenesis of GDD remain unclear. Here, we generated the first knock-in mouse model for GDD with the expression of human mutation p.Cys360Tyr in ANO5. Homozygous Ano5 knock-in mice (Ano5KI/KI ) replicated GDD-like skeletal features, including massive jawbones, bowing tibia, bone fragility, sclerosis, and cortical thickening of the femoral and tibial diaphysis. Serum alkaline phosphatase (ALP) levels were elevated in Ano5KI/KI mice as in GDD patients with p.Cys360Tyr mutation. Calvaria-derived Ano5KI/KI osteoblast cultures showed increased osteoblastogenesis, including hypermineralized bone matrix and enhanced bone formation-related factors expression. Interestingly, Ano5KI/KI bone marrow-derived macrophage cultures showed decreased osteoclastogenesis, and Ano5KI/KI osteoclasts exhibited disrupted actin ring formation, which may be associated with some signaling pathways. In conclusion, this new mouse model may facilitate elucidation of the pathogenesis of GDD and shed more light on its treatment. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Anoctaminas , Osteogênese Imperfeita , Animais , Anoctaminas/genética , Osso e Ossos/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Mutação/genética , Osteoclastos/patologia , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/patologia
18.
Materials (Basel) ; 16(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36614395

RESUMO

The purpose of this study was to investigate the effect of cold atmospheric plasma (CAP) treatment on resin nanoceramic (RNC) surface state and its bond strength with resin cement. RNC with different surface treatments were prepared: control, sandblasting treatment (SB), hydrofluoric acid etching (HF) and plasma treatment of helium gas (CAP-He) and argon gas (CAP-Ar). The prepared samples were measured by SEM, Ra, Rz, contact angle goniometer, and XPS for surface characteristics. The shear bond test of RNC was examined in nine groups: SB + saline coupling agent (SL), HF + SL, CAP-He/Ar, CAP-He/Ar + SL, SB + CAP-He/Ar + SL, and control. The bond strength between RNC and resin cement was compared using shear bond strength test, before and after thermocycling. After CAP irradiation, the surface topography maintained, while the surface water contact angle was significantly reduced to 10.18° ± 1.36° (CAP-He) and 7.58° ± 1.79° (CAP-Ar). The removal of carbon contamination and inducing of oxygen radicals was detected after CAP treatment. The bond strength was improved by CAP treatment, but varied on CAP gas species and combination methods. CAP of Ar gas had better SBS than He gas. After thermocycling, CAP-Ar + SL showed the maximized shear bond strength (32.38 ± 1.42 MPa), even higher than SB + SL group (30.08 ± 2.80 MPa, p < 0.05). In conclusion, CAP treatment of helium and argon can improve the bonding properties of RNC by improving surface wettability, and CAP of argon gas combined with silane coupling agent shows the highest bond strength.

19.
Materials (Basel) ; 14(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34832162

RESUMO

Carbon-selenium composite positive electrode (CSs@Se) is engineered in this project using a melt diffusion approach with glucose as a precursor, and it demonstrates good electrochemical performance for lithium-selenium batteries. X-ray diffraction (XRD) and scanning electron microscopy (SEM) with EDS analysis are used to characterize the newly designed CSs@Se electrode. To complete the evaluation, electrochemical characterization such as charge-discharge (rate performance and cycle stability), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) tests are done. The findings show that selenium particles are distributed uniformly in mono-sized carbon spheres with enormous surface areas. Furthermore, the charge-discharge test demonstrates that the CSs@Se cathode has a rate performance of 104 mA h g-1 even at current density of 2500 mA g-1 and can sustain stable cycling for 70 cycles with a specific capacity of 270 mA h g-1 at current density of 25 mA g-1. The homogeneous diffusion of selenium particles in the produced spheres is credited with an improved electrochemical performance.

20.
Plant Physiol ; 187(4): 2637-2655, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618092

RESUMO

Programmable site-specific nucleases, such as the clustered regularly interspaced short palindromic repeat (CRISPR)/ CRISPR-associated protein 9 (Cas9) ribonucleoproteins (RNPs), have allowed creation of valuable knockout mutations and targeted gene modifications in Chlamydomonas (Chlamydomonas reinhardtii). However, in walled strains, present methods for editing genes lacking a selectable phenotype involve co-transfection of RNPs and exogenous double-stranded DNA (dsDNA) encoding a selectable marker gene. Repair of the dsDNA breaks induced by the RNPs is usually accompanied by genomic insertion of exogenous dsDNA fragments, hindering the recovery of precise, scarless mutations in target genes of interest. Here, we tested whether co-targeting two genes by electroporation of pairs of CRISPR/Cas9 RNPs and single-stranded oligodeoxynucleotides (ssODNs) would facilitate the recovery of precise edits in a gene of interest (lacking a selectable phenotype) by selection for precise editing of another gene (creating a selectable marker)-in a process completely lacking exogenous dsDNA. We used PPX1 (encoding protoporphyrinogen IX oxidase) as the generated selectable marker, conferring resistance to oxyfluorfen, and identified precise edits in the homolog of bacterial ftsY or the WD and TetratriCopeptide repeats protein 1 genes in ∼1% of the oxyfluorfen resistant colonies. Analysis of the target site sequences in edited mutants suggested that ssODNs were used as templates for DNA synthesis during homology directed repair, a process prone to replicative errors. The Chlamydomonas acetolactate synthase gene could also be efficiently edited to serve as an alternative selectable marker. This transgene-free strategy may allow creation of individual strains containing precise mutations in multiple target genes, to study complex cellular processes, pathways, or structures.


Assuntos
Proteínas de Algas/genética , Sistemas CRISPR-Cas , Chlamydomonas/genética , Edição de Genes/métodos , Ribonucleoproteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA