RESUMO
Immunotherapy is a promising cancer treatment because of its ability to sustainably enhance the natural immune response. However, the effects of multiple immunotherapies, including ICIs, are limited by resistance to these agents, immune-related adverse events, and a lack of reasonable therapeutic targets available at the right time and place. The tumor microenvironment (TME), which features tumor-associated macrophages (TAMs), plays a significant role in resistance owing to its hypoxic microenvironment and lack of blood vessels, resulting in cancer immune evasion. To enhance immunotherapy, photodynamic therapy (PDT) can increase innate and adaptive immune responses through immunogenic cell death (ICD) and improve the TME. Traditional photosensitizers (PSs) also include novel nanomedicines to precisely target tumor cells or TAMs. Here, we reviewed and summarized current strategies and possible influencing factors for nanomedicines for cancer photoimmunotherapy.
Assuntos
Imunoterapia , Nanomedicina , Neoplasias , Fotoquimioterapia , Fármacos Fotossensibilizantes , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Fotoquimioterapia/métodos , Imunoterapia/métodos , Neoplasias/terapia , Neoplasias/imunologia , Microambiente Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Fármacos Fotossensibilizantes/farmacologia , Animais , Terapia Combinada/métodosRESUMO
Soluble host factors in the upper respiratory tract can serve as the first line of defense against SARS-CoV-2 infection. In this study, we described the identification and function of a human airway trypsin-like protease (HAT), capable of reducing the infectivity of ancestral SARS-CoV-2. Further, in mouse models, HAT analogue expression was upregulated by SARS-CoV-2 infection. The antiviral activity of HAT functioned through the cleavage of the SARS-CoV-2 spike glycoprotein at R682. This cleavage resulted in inhibition of the attachment of ancestral spike proteins to host cells, which inhibited the cell-cell membrane fusion process. Importantly, exogenous addition of HAT notably reduced the infectivity of ancestral SARS-CoV-2 in vivo. However, HAT was ineffective against the Delta variant and most circulating Omicron variants, including the BQ.1.1 and XBB.1.5 subvariants. We demonstrate that the P681R mutation in Delta and P681H mutation in the Omicron variants, adjacent to the R682 cleavage site, contributed to HAT resistance. Our study reports what we believe to be a novel soluble defense factor against SARS-CoV-2 and resistance of its actions in the Delta and Omicron variants.
Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/virologia , COVID-19/metabolismo , COVID-19/genética , Animais , Camundongos , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Células HEK293 , Mutação , Mutação de Sentido Incorreto , Chlorocebus aethiopsRESUMO
Breast cancer (BC) is the most frequently diagnosed malignancy in female patients. There is a significant lack of therapeutic strategies for BC, particularly triple-negative breast cancer (TNBC). Honokiol (HNK), a lignin extracted from the Magnolia genus plant, has demonstrated numerous pharmacological effects. Therefore, this study aims to investigate the antitumor effect of HNK on BC cells and employ high-throughput sequencing to elucidate its potential mechanism. We found that HNK significantly inhibited proliferation and induced apoptosis on BC cell lines in a dose-dependent manner. Moreover, HNK treatment suppressed migration and colony formation and initiated the intrinsic apoptotic pathway specifically in MDA-MB-231 cells. High-throughput sequencing and bioinformatics analysis revealed that miR-148a-5p expression was significantly up-regulated, whereas CYP1B1 expression was down-regulated following HNK treatment. Importantly, survival analysis based on TCGA database showed high miR-148a-5p expression was correlated with a better prognosis for BC patients. Inhibition of miR-148a-5p by inhibitor not only increased cell viability but also attenuated apoptosis induced by HNK. Finally, a strong synergistic effect between HNK and paclitaxel was observed in vitro. In conclusion, our study validated the antitumor efficacy of HNK against human BC cells and elucidated its underlying mechanism through high-throughput sequencing, thereby providing compelling evidence for further exploration of the potential clinical application of HNK towards the treatment of BC.
RESUMO
OBJECTIVES: This study evaluates the accuracy of radiomics in predicting lymph node metastasis in non-small cell lung cancer, which is crucial for patient management and prognosis. METHODS: Adhering to PRISMA and AMSTAR guidelines, we systematically reviewed literature from March 2012 to December 2023 using databases including PubMed, Web of Science, and Embase. Radiomics studies utilizing computed tomography (CT) and positron emission tomography (PET)/CT imaging were included. The quality of studies was appraised with QUADAS-2 and RQS tools, and the TRIPOD checklist assessed model transparency. Sensitivity, specificity, and AUC values were synthesized to determine diagnostic performance, with subgroup and sensitivity analyses probing heterogeneity and a Fagan plot evaluating clinical applicability. RESULTS: Our analysis incorporated 42 cohorts from 22 studies. CT-based radiomics demonstrated a sensitivity of 0.84 (95% CI: 0.79-0.88, p < 0.01) and specificity of 0.82 (95% CI: 0.75-0.87, p < 0.01), with an AUC of 0.90 (95% CI: 0.87-0.92), indicating no publication bias (p-value = 0.54 > 0.05). PET/CT radiomics showed a sensitivity of 0.82 (95% CI: 0.76-0.86, p < 0.01) and specificity of 0.86 (95% CI: 0.81-0.90, p < 0.01), with an AUC of 0.90 (95% CI: 0.87-0.93), with a slight publication bias (p-value = 0.03 < 0.05). Despite high clinical utility, subgroup analysis did not clarify heterogeneity sources, suggesting influences from possible factors like lymph node location and small subgroup sizes. CONCLUSIONS: Radiomics models show accuracy in predicting lung cancer lymph node metastasis, yet further validation with larger, multi-center studies is necessary. CLINICAL RELEVANCE STATEMENT: Radiomics models using CT and PET/CT imaging may improve the prediction of lung cancer lymph node metastasis, aiding personalized treatment strategies. RESEARCH REGISTRATION UNIQUE IDENTIFYING NUMBER (UIN): International Prospective Register of Systematic Reviews (PROSPERO), CRD42023494701. This study has been registered on the PROSPERO platform with a registration date of 18 December 2023. https://www.crd.york.ac.uk/prospero/ KEY POINTS: The study explores radiomics for lung cancer lymph node metastasis detection, impacting surgery and prognosis. Radiomics improves the accuracy of lymph node metastasis prediction in lung cancer. Radiomics can aid in the prediction of lymph node metastasis in lung cancer and personalized treatment.
RESUMO
INTRODUCTION: Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) are critical components of the extracellular matrix (ECM) in colorectal cancer (CRC). We aimed to evaluate the prognostic value of MMP-2 and MMP-9 in patients with CRC. METHODS: We performed a meta-analysis of cohort studies with available data on the effect of MMP-2 and MMP-9 expression on both disease-free survival (DFS) and overall survival (OS) by the risk ratios (RRs) with their 95% confidence intervals (CIs). Studies were subgrouped based on the different tissue types, including cancer tissue and normal tissue, and the subgroup effect of MMP expression in different tissues was analyzed through meta-regression. To ensure the quality and reduce the risk of bias, the NewcastleâOttawa Scale (NOS) was used to assess the included studies. A sensitivity analysis was randomly performed to assess the potential impact of each study on our results. RESULTS: Eighteen trials were selected (Table 1) and included a total of 3944 patients. According to our primary meta-analysis, the expression of MMP-2 was significantly associated with a decrease in OS (RR = 1.75, 95% CI = 1.34 to 2.29, P < 0.001) and DFS (RR = 2.62, 95% CI = 1.25 to 5.49, P < 0.001), and the expression of MMP-9 was not significantly associated with a decrease in OS (RR = 1.48, 95% CI = 0.97 to 2.24, P = 0.069) or DFS (RR = 1.60, 95% CI = 0.87 to 2.94, P = 0.133). According to the subgroup analysis of MMPs in different tissues, high MMP-2 expression in cancer tissue (RR = 1.90, 95% CI = 1.29 to 2.79) and normal tissue (RR = 1.59, 95% CI = 1.17 to 2.17) were significant indicators of poor OS. High MMP-2 expression in cancer tissue was significant indicator of poor DFS (RR = 2.12, 95% CI = 1.09 to 4.11). MMP-9 expression was also associated with poor OS (RR = 1.40, 95% CI = 0.85 to 2.29), but the difference in OS between the high and low expression groups was not statistically significant. CONCLUSIONS: High MMP-2 expression, especially in cancer tissue, is significantly associated with both poor DFS and poor OS in patients with CRC. High MMP-9 expression tended to indicate a poor prognosis of CRC but the correlation was not significant.
Assuntos
Neoplasias Colorretais , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Humanos , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Intervalo Livre de Doença , Metaloproteinase 2 da Matriz/análise , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/análise , Metaloproteinase 9 da Matriz/metabolismo , PrognósticoRESUMO
BACKGROUND: Neoadjuvant immunotherapy is under intensive investigation for esophageal squamous cell carcinoma (ESCC). This study assesses the efficacy and immune response of neoadjuvant immunochemotherapy (nICT) in ESCC. METHODS: In this phase II trial (ChiCTR2100045722), locally advanced ESCC patients receiving nICT were enrolled. The primary endpoint was the pathological complete response (pCR) rate. Multiplexed immunofluorescence, RNA-seq and TCR-seq were conducted to explore the immune response underlying nICT. RESULTS: Totally 42 patients were enrolled, achieving a 27.0% pCR rate. The 1-year, 2-year DFS and OS rates were 89.2%, 64.4% and 97.3%, 89.2%, respectively. RNA-seq analysis highlighted T-cell activation as the most significantly enriched pathway. The tumour immune microenvironment (TIME) was characterised by high CD4, CD8, Foxp3, and PD-L1 levels, associating with better pathological regression (TRS0/1). TIME was categorised into immune-infiltrating, immune-tolerant, and immune-desert types. Notably, the immune-infiltrating type and tertiary lymphoid structures correlated with improved outcomes. In the context of nICT, TIM-3 negatively influenced treatment efficacy, while elevated TIGIT/PD-1 expression post-nICT correlated positively with CD8+ T cell levels. TCR-seq identified three TCR rearrangements, underscoring the specificity of T-cell responses. CONCLUSIONS: Neoadjuvant camrelizumab plus chemotherapy is effective for locally advanced, resectable ESCC, eliciting profound immune response that closely associated with clinical outcomes.
Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Terapia Neoadjuvante , Microambiente Tumoral , Humanos , Feminino , Masculino , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/patologia , Pessoa de Meia-Idade , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/patologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/uso terapêutico , Microambiente Tumoral/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Idoso , Resultado do Tratamento , Adulto , Imunoterapia/métodosRESUMO
Cardiac myxoma is a commonly encountered tumor within the heart that has the potential to be life-threatening. However, the cellular composition of this condition is still not well understood. To fill this gap, we analyzed 75,641 cells from cardiac myxoma tissues based on single-cell sequencing. We defined a population of myxoma cells, which exhibited a resemblance to fibroblasts, yet they were distinguished by an increased expression of phosphodiesterases and genes associated with cell proliferation, differentiation, and adhesion. The clinical relevance of the cell populations indicated a higher proportion of myxoma cells and M2-like macrophage infiltration, along with their enhanced spatial interaction, were found to significantly contribute to the occurrence of embolism. The immune cells surrounding the myxoma exhibit inhibitory characteristics, with impaired function of T cells characterized by the expression of GZMK and TOX, along with a substantial infiltration of tumor-promoting macrophages expressed growth factors such as PDGFC. Furthermore, in vitro co-culture experiments showed that macrophages promoted the growth of myxoma cells significantly. In summary, this study presents a comprehensive single-cell atlas of cardiac myxoma, highlighting the heterogeneity of myxoma cells and their collaborative impact on immune cells. These findings shed light on the complex pathobiology of cardiac myxoma and present potential targets for intervention.
Assuntos
Neoplasias Cardíacas , Mixoma , Microambiente Tumoral , Humanos , Mixoma/patologia , Mixoma/genética , Mixoma/imunologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Neoplasias Cardíacas/genética , Neoplasias Cardíacas/patologia , Neoplasias Cardíacas/imunologia , Macrófagos/imunologia , Macrófagos/patologia , Proliferação de Células/genética , Masculino , FemininoRESUMO
Background: Although prognostic models based on pyroptosis-related genes (PRGs) have been constructed in bladder cancer (BLCA), the comprehensive impact of these genes on tumor microenvironment (TME) and immunotherapeutic response has yet to be investigated. Methods: Based on expression profiles of 52 PRGs, we utilized the unsupervised clustering algorithm to identify PRGs subtypes and ssGSEA to quantify immune cells and hallmark pathways. Moreover, we screened feature genes of distinct PRGs subtypes and validated the associations with immune infiltrations in tissue using the multiplex immunofluorescence. Univariate, LASSO, and multivariate Cox regression analyses were employed to construct the scoring scheme. Results: Four PRGs clusters were identified, samples in cluster C1 were infiltrated with more immune cells than those in others, implying a favorable response to immunotherapy. While the cluster C2, which shows an extremely low level of most immune cells, do not respond to immunotherapy. CXCL9/CXCL10 and SPINK1/DHSR2 were identified as feature genes of cluster C1 and C2, and the specimen with high CXCL9/CXCL10 was characterized by more CD8 + T cells, macrophages and less Tregs. Based on differentially expressed genes (DEGs) among PRGs subtypes, a predictive model (termed as PRGs score) including five genes (CACNA1D, PTK2B, APOL6, CDK6, ANXA2) was built. Survival probability of patients with low-PRGs score was significantly higher than those with high-PRGs score. Moreover, patients with low-PRGs score were more likely to benefit from anti-PD1/PD-L1 regimens. Conclusion: PRGs are closely associated with TME and oncogenic pathways. PRGs score is a promising indicator for predicting clinical outcome and immunotherapy response.
RESUMO
Breakthroughs in actual clinical applications have begun through vaccine-based cancer immunotherapy, which uses the body's immune system, both humoral and cellular, to attack malignant cells and fight diseases. However, conventional vaccine approaches still face multiple challenges eliciting effective antigen-specific immune responses, resulting in immunotherapy resistance. In recent years, biomimetic nanovaccines have emerged as a promising alternative to conventional vaccine approaches by incorporating the natural structure of various biological entities, such as cells, viruses, and bacteria. Biomimetic nanovaccines offer the benefit of targeted antigen-presenting cell (APC) delivery, improved antigen/adjuvant loading, and biocompatibility, thereby improving the sensitivity of immunotherapy. This review presents a comprehensive overview of several kinds of biomimetic nanovaccines in anticancer immune response, including cell membrane-coated nanovaccines, self-assembling protein-based nanovaccines, extracellular vesicle-based nanovaccines, natural ligand-modified nanovaccines, artificial antigen-presenting cells-based nanovaccines and liposome-based nanovaccines. We also discuss the perspectives and challenges associated with the clinical translation of emerging biomimetic nanovaccine platforms for sensitizing cancer cells to immunotherapy.
Assuntos
Células Apresentadoras de Antígenos , Vacinas Anticâncer , Imunoterapia , Nanopartículas , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia/métodos , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Nanopartículas/administração & dosagem , Células Apresentadoras de Antígenos/imunologia , Biomimética/métodos , Materiais Biomiméticos/administração & dosagem , Animais , Lipossomos , NanovacinasRESUMO
Colorectal carcinoma (CRC) stands as a pressing global health issue, marked by the unbridled proliferation of immature cells influenced by multifaceted internal and external factors. Numerous studies have explored the intricate mechanisms of tumorigenesis in CRC, with a primary emphasis on signaling pathways, particularly those associated with growth factors and chemokines. However, the sheer diversity of molecular targets introduces complexity into the selection of targeted therapies, posing a significant challenge in achieving treatment precision. The quest for an effective CRC treatment is further complicated by the absence of pathological insights into the mutations or alterations occurring in tumor cells. This study reveals the transfer of signaling from the cell membrane to the nucleus, unveiling recent advancements in this crucial cellular process. By shedding light on this novel dimension, the research enhances our understanding of the molecular intricacies underlying CRC, providing a potential avenue for breakthroughs in targeted therapeutic strategies. In addition, the study comprehensively outlines the potential immune responses incited by the aberrant activation of signaling pathways, with a specific focus on immune cells, cytokines, and their collective impact on the dynamic landscape of drug development. This research not only contributes significantly to advancing CRC treatment and molecular medicine but also lays the groundwork for future breakthroughs and clinical trials, fostering optimism for improved outcomes and refined approaches in combating colorectal carcinoma.
Assuntos
Neoplasias Colorretais , Terapia de Alvo Molecular , Transdução de Sinais , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/terapia , Neoplasias Colorretais/imunologia , Humanos , Transdução de Sinais/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologiaRESUMO
BACKGROUND: Cancer is a leading global cause of death. Conventional cancer treatments like surgery, radiation, and chemotherapy have associated side effects. Ferroptosis, a nonapoptotic and iron-dependent cell death, has been identified and differs from other cell death types. Research has shown that ferroptosis can promote and inhibit tumor growth, which may have prognostic value. Given the unclear role of ferroptosis in cancer biology, this meta-analysis aims to investigate its impact on cancer prognosis. METHODS: This systematic review and meta-analysis conducted searches on PubMed, Embase, and the Cochrane Library databases. Eight retrospective studies were included to compare the impact of ferroptosis inhibition and promotion on cancer patient prognosis. The primary endpoints were overall survival (OS) and progression-free survival (PFS). Studies lacking clear descriptions of hazard ratios (HR) and 95% confidence intervals for OS and PFS were excluded. Random-effects meta-analysis and meta-regression were performed on the included study data to assess prognosis differences between the experimental and control groups. Meta-analysis results included HR and 95% confidence intervals. This study has been registered with PROSPERO, CRD 42023463720 on September 27, 2023. RESULTS: A total of 2,446 articles were screened, resulting in the inclusion of 5 articles with 938 eligible subjects. Eight studies were included in the meta-analysis after bias exclusion. The meta-analysis, after bias exclusion, demonstrated that promoting ferroptosis could increase cancer patients' overall survival (HR 0.31, 95% CI 0.21-0.44) and progression-free survival (HR 0.26, 95% CI 0.16-0.44) compared to ferroptosis inhibition. The results showed moderate heterogeneity, suggesting that biological activities promoting cancer cell ferroptosis are beneficial for cancer patient's prognosis. CONCLUSIONS: This systematic review and meta-analysis demonstrated that the promotion of ferroptosis yields substantial benefits for cancer prognosis. These findings underscore the untapped potential of ferroptosis as an innovative anti-tumor therapeutic strategy, capable of addressing challenges related to drug resistance, limited therapeutic efficacy, and unfavorable prognosis in cancer treatment. REGISTRATION: CRD42023463720.
Assuntos
Ferroptose , Neoplasias , Humanos , Ferroptose/efeitos dos fármacos , Neoplasias/patologia , Neoplasias/mortalidade , Neoplasias/tratamento farmacológico , Prognóstico , Fatores de Proteção , Intervalo Livre de ProgressãoRESUMO
Malnutrition is a prevalent and severe issue in hospitalized patients with chronic diseases. However, malnutrition screening is often overlooked or inaccurate due to lack of awareness and experience among health care providers. This study aimed to develop and validate a novel digital smartphone-based self-administered tool that uses facial features, especially the ocular area, as indicators of malnutrition in inpatient patients with chronic diseases. Facial photographs and malnutrition screening scales were collected from 619 patients in four different hospitals. A machine learning model based on back propagation neural network was trained, validated, and tested using these data. The model showed a significant correlation (p < 0.05) and a high accuracy (area under the curve 0.834-0.927) in different patient groups. The point-of-care mobile tool can be used to screen malnutrition with good accuracy and accessibility, showing its potential for screening malnutrition in patients with chronic diseases.
RESUMO
Background: The Node Reporting and Data System (Node-RADS) is a recently proposed classification system for the categorization of lymph nodes in radiological images. This study was conducted to retrospectively evaluate the diagnostic accuracy of the Node-RADS score for metastatic cervical lymph nodes on magnetic resonance imaging (MRI) of patients with nasopharyngeal carcinoma (NPC). Methods: We retrospectively analyzed cervical lymph nodes of NPC cases. Two radiologists independently evaluated each lymph node on the MRI scans using Node-RADS. Interobserver agreement between 2 radiologists for Node-RADS score assessment was evaluated by linear weighted kappa statistics. The correlation between metastasis and the Node-RADS score of each lymph node was analyzed using multivariate regression analysis. To investigate the diagnostic performance of the Node-RADS score, we further conducted receiver operating characteristic curve analysis. Correspondently, the sensitivity, specificity, positive predictive value, and negative predictive value of each different cutoff (>1, >2, >3, and >4) were computed. Results: In all, 119 patients with NPC were assessed, including 203 cervical lymph nodes consisting of 140 (69%) of 203 metastatic and 63 (31%) of 203 benign. The kappa agreement between the 2 readers for the Node-RADS score was 0.863 (95% CI = 0.830-0.897, P < .001). Node-RADS score on MRI scan was shown to be an independent predictive factor of lymph node metastasis after multivariate regression analysis (odds ratio [OR] = 6.745, 95% CI = 3.964-11.474, P < .001). Node-RADS achieved an area under the curve (AUC) of 0.950 (95% CI = 0.921-0.979) in diagnosing metastatic lymph nodes. When Node-RADS >2 was identified as the best cutoff based on balanced values, the sensitivity and positive predictive value were 0.92 and 0.94, respectively. Conclusions: Our study suggests that the Node-RADS score has high accuracy in predicting NPC cervical lymph node metastasis. Nevertheless, this conclusion requires confirmation in a larger cohort of patients with NPC.
Assuntos
COVID-19 , Saúde Pública , Humanos , Saúde Pública/educação , Educação em Saúde , PrevisõesRESUMO
Microvascular invasion (MVI) has been widely valued in the field of liver surgery because MVI positivity indicates poor prognosis in hepatocellular carcinoma (HCC) patients. However, the potential molecular mechanism underlying the poor prognosis of MVI-positive HCC patients is unclear. Therefore, this study focused on identifying the key genes leading to poor prognosis in patients with a high degree of malignancy of HCC by examining the molecular signaling pathways in MVI-positive HCC patients. Through RNA sequencing, TOX high mobility group box family member 3 (TOX3) was demonstrated to be significantly highly expressed in MVI-positive HCC tissues, which was associated with poor prognosis. The results of in vivo and in vitro showed that TOX3 can promote the oncogenesis and development of HCC by targeting key molecules of the MAPK and EMT signaling pathways. The IP-MS results indicated that proteasome degradation of TOX3 in HCC cells is potentially mediated by a tripartite motif containing 56 (TRIM56, an E3 ligase) in HCC cells. Inhibiting TRIM56 enhances TOX3 protein levels. Overall, our study identified TOX3 as a key gene in the MAPK and EMT signaling pathways in HCC, and its overexpression confers significant proliferation and invasiveness to tumor cells.
RESUMO
PURPOSE: This study will focus on 4T1 cells, a murine mammary adenocarcinoma cell line, as the primary research subject. We aim to investigate the inhibitory effects and mechanisms of propranolol on epithelial-mesenchymal transition (EMT) in breast cancer cells, aiming to elucidate this phenomenon at the miRNA level. METHODS: In this study, the EMT inhibitory effect of propranolol was observed through in vitro and animal experiments. For the screening of potential target miRNAs and downstream target genes, second-generation sequencing (SGS) and bioinformatics analysis were conducted. Following the screening process, the identified target miRNAs and their respective target genes were confirmed using various experimental methods. To confirm the target miRNAs and target genes, Western Blot (WB), reverse transcription polymerase chain reaction (RT-PCR), and immunofluorescence experiments were performed. RESULTS: In this study, we found that propranolol significantly reduced lung metastasis in 4T1 murine breast cancer cells (p < 0.05). In vitro and in vivo experiments demonstrated that propranolol inhibited the epithelial-mesenchymal transition (EMT) as evidenced by Western Blot analysis (p < 0.05). Through next-generation sequencing (SGS), subsequent bioinformatics analysis, and PCR validation, we identified a marked downregulation of miR-499-5p (p < 0.05), suggesting its potential involvement in mediating the suppressive effects of propranolol on EMT. Overexpression of miR-499-5p promoted EMT, migration, and invasion of 4T1 cells, and these effects were not reversed or attenuated by propranolol (Validated via Western Blot, wound healing assay, transwell migration, and invasion assays, p < 0.05). Sox6 was identified as a functional target of miR-499-5p, with its downregulation correlating with the observed EMT changes (p < 0.05). Silencing Sox6 or overexpressing miR-499-5p inhibited Sox6 expression, further promoting the processes of EMT, invasion, and migration in 4T1 cells. Notably, these effects were not alleviated by propranolol (validated via Western Blot, wound healing assay, transwell migration, and invasion assays, p < 0.05). The direct interaction between miR-499-5p and Sox6 mRNA was confirmed by dual-luciferase reporter gene assay. CONCLUSION: These results suggest that propranolol may have potential as a therapeutic agent for breast cancer treatment by targeting EMT and its regulatory mechanisms.
Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , MicroRNAs , Propranolol , Animais , Camundongos , Western Blotting , Linhagem Celular , Transição Epitelial-Mesenquimal/efeitos dos fármacos , MicroRNAs/genética , Propranolol/farmacologia , Fatores de Transcrição SOXD , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genéticaRESUMO
Background: Smoking is one of the major risk factors for shortened lifespan and disability, while smoking cessation is currently the only guaranteed method to reduce the harm caused by smoking. E-health is a field that utilizes information and communication technology to support the health status of its users. The emergence of this digital health approach has provided a new way of smoking cessation support for smokers seeking help, and an increasing number of researchers are attempting to use e-health for a wide range of effective smoking cessation interventions. We conducted a systematic review and meta-analysis of studies that used e-health as a smoking cessation support tool. Methods: This systematic review and meta-analysis searched the PubMed, Embase, and Cochrane Library databases until December 2022. The included studies were randomized controlled trials (RCTs) comparing the use of e-health interventions and traditional offline smoking cessation care interventions. The primary outcome of the studies was the point smoking cessation rate (7-day and 30-day), and the secondary outcome was sustained smoking cessation rates. Studies were excluded if there was no clear e-health intervention described or if standard-compliant cessation outcomes were not clearly reported. Fixed-effects meta-analysis and meta-regression analyses were performed on the included study data to evaluate the effectiveness of the interventions. The meta-analysis outcome was the risk ratio (RR) and a 95% confidence interval. The study was registered with PROSPERO, CRD42023388667. Findings: We collectively screened 2408 articles, and ultimately included 39 articles with a total of 17,351 eligible participants, of which 44 studies were included in the meta-analysis. The meta-analysis revealed that compared to traditional smoking cessation interventions, e-health interventions can increase point quit rates (RR 1.86, 95% CI 1.69-2.04) as well as sustained quit rates in the long-term (RR 1.79, 95% CI 1.60-2.00) among smokers. Subgroup analysis showed that text and telephone interventions in e-health significantly improved short-term quit rates for up to 7 days (RR 2.10, 95% CI 1.77-2.48). Website and app interventions also had a positive impact on improving short-term quit rates for up to 7 days (RR 1.74, 95% CI 1.56-1.94). The heterogeneity of the study results was low, demonstrating the significant smoking cessation advantages of e-health interventions. Interpretation: We have found that personalized e-health interventions can effectively help smokers quit smoking. The diverse remote intervention methods of e-health can provide more convenient options for further customization. Additionally, further follow-up research is needed to evaluate the sustained effectiveness of interventions on smokers' continuous abstinence over a longer period (greater than one year). In the future, e-health can further optimize smoking cessation strategies. Funding: No funding.
RESUMO
Colorectal cancer is the third most prevalent cancer worldwide, and its treatment has been a demanding clinical problem. Beyond traditional surgical therapy and chemotherapy, newly revealed molecular mechanisms diversify therapeutic approaches for colorectal cancer. However, the selection of personalized treatment among multiple treatment options has become another challenge in the era of precision medicine. Artificial intelligence has recently been increasingly investigated in the treatment of colorectal cancer. This narrative review mainly discusses the applications of artificial intelligence in the treatment of colorectal cancer patients. A comprehensive literature search was conducted in MEDLINE, EMBASE, and Web of Science to identify relevant papers, resulting in 49 articles being included. The results showed that, based on different categories of data, artificial intelligence can predict treatment outcomes and essential guidance information of traditional and novel therapies, thus enabling individualized treatment strategy selection for colorectal cancer patients. Some frequently implemented machine learning algorithms and deep learning frameworks have also been employed for long-term prognosis prediction in patients with colorectal cancer. Overall, artificial intelligence shows encouraging results in treatment strategy selection and prognosis evaluation for colorectal cancer patients.