Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 14(2): 428-432, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34897351

RESUMO

Efficient on-chip manipulation of photon spin is of crucial importance in developing future integrated nanophotonics as is electron spin in spintronics. The unidirectionality induced by the interaction between spin and orbital angular momenta suffers low efficiency in classical macroscopic optics, while it can be highly enhanced on subwavelength scales with suitable architectures. Here we propose and demonstrate a spin-sorting achiral split-ring coupler to unidirectionally excite dielectric-loaded plasmonic modes in two independent waveguides. We found experimentally that the impinging light with different spin can be selectively directed into one of two branching plasmonic waveguides with a directionality contrast up to 15.1 dB. A circular-helicity-independent compact beam splitter is also realized demonstrating great potential in designing complex interconnect nanocircuits. The illustrated approach is believed to open new avenues for developing advanced optical functionalities with a flexible degree of freedom in manipulation of on-chip chirality within chiral optics.

2.
Opt Lett ; 46(22): 5675-5678, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780434

RESUMO

On-chip controlling of photon spin is essential in developing future integrated nanophotonics with complex functionalities. Here we propose and demonstrate a robust spin-sorting nanocircuit, which consists of a spin-orbit coupler (i.e., combined nanoring and nanodisk) and an L-shaped dielectric-loaded surface plasmon (DLSPs) waveguide. The nanocircuit with optimized geometric parameters is shown to be capable of unidirectionally exciting and routing a DLSP mode along an independent waveguide. We found experimentally that the proposed device possesses an average insertion loss (extinction ratio) of 0.13 dB (14.8 dB) under complete circularly polarized incidence with opposite spin, which is in good agreement with theoretical calculations. The proposed spin-selective scheme may pave the way for applications in the manipulation of chirality with a flexible degree of freedom.

3.
Nanomaterials (Basel) ; 10(7)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708603

RESUMO

A Bragg-mirror-assisted terahertz (THz) high-contrast and broadband plasmonic interferometer is proposed and theoretically investigated for potential sensing applications. The central microslit couples the incident THz wave into unidirectional surface plasmon polaritons (SPPs) waves travelling to the bilateral Bragg gratings, where they are totally reflected over a wide wavelength range back towards the microslit. The properties of interference between the SPPs waves and transmitted THz wave are highly dependent on the surrounding material, offering a flexible approach for the realization of refractive index (RI) detection. The systematic study reveals that the proposed interferometric sensor possesses wavelength sensitivity as high as 167 µm RIU-1 (RIU: RI unit). More importantly, based on the intensity interrogation method, an ultrahigh Figure-of-Merit (FoM) of 18,750% RIU-1, surpassing that of previous plasmonic sensors, is obtained due to the high-contrast of interference pattern. The results also demonstrated that the proposed sensors are also quite robust against the oblique illumination. It is foreseen the proposed configuration may open up new horizons in developing THz plasmonic sensing platforms and next-generation integrated THz circuits.

4.
Opt Express ; 28(11): 16526-16541, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549473

RESUMO

The depressed core fiber (DCF), consisting of a low-index solid core, a high-index cladding and air surrounding, is in effect a bridge between the conventional step-index fiber and the tube-type hollow-core fiber from the point of view of the index profile. In this paper the dispersion diagram of a DCF is obtained by solving the full-vector eigenvalue equations and analyzed using the theory of anti-resonant and the inhibited coupling mechanisms. While light propagation in tube-type hollow-core fibers is commonly described by the symmetric planar waveguide model, here we propose an asymmetric planar waveguide for the DCFs in an anti-resonant reflecting optical waveguide (ARROW) model. It is found that the anti-resonant core modes in the DCFs have real effective indices, compared to the anti-resonant core modes with complex effective indices in the tube-type hollow-core fibers. The anti-resonant core modes in the DCFs exhibit similar qualitative and quantitative behavior as the core modes in the conventional step-index fibers. The full-vector analytical results for the simple-structure DCFs can contribute to a better understanding of the anti-resonant and inhibited coupling guidance mechanisms in other complex inversed index fibers.

5.
Opt Lett ; 42(12): 2338-2341, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28614346

RESUMO

A robust plasmonic semiconductor-based Mach-Zehnder interferometer (MZI), which consists of a semiconductor layer with a microslit flanked by two identical microgrooves, is proposed and investigated for the terahertz sensing. The microgrooves reflect the surface plasmon polariton waves toward the microslit, where they interfere with the transmitted terahertz wave. The interference pattern is determined by the permittivities of the sensing material and semiconductor (i.e., temperature dependent), making the structure useful for the refractive index (RI) and temperature detection. A quantitative theoretical model is also developed for performance prediction and validated with a finite element method. The numerical results show that the Mach-Zehnder interferometer sensor possesses an RI sensitivity as high as 140000 nm/RIU (or 0.42 THz/RIU) and a relative intensity sensitivity of 1200%RIU-1. In addition, a temperature sensitivity of 1470 nm/K (or 4.7×10-3 THz/K) is determined. Theoretical calculations indicate that the further improvement in sensing performance is still possible through optimization of the structure. The proposed sensing scheme may pave the way for applications in terahertz sensing and integrated terahertz circuits.

6.
Sci Rep ; 6: 38784, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27924939

RESUMO

Seeking better surface plasmon polariton (SPP) waveguides is of critical importance to construct the frequency-agile terahertz (THz) front-end circuits. We propose and investigate here a new class of semiconductor-based slot plasmonic waveguides for subwavelength THz transport. Optimizations of the key geometrical parameters demonstrate its better guiding properties for simultaneous realization of long propagation lengths (up to several millimeters) and ultra-tight mode confinement (~λ2/530) in the THz spectral range. The feasibility of the waveguide for compact THz components is also studied to lay the foundations for its practical implementations. Importantly, the waveguide is compatible with the current complementary metal-oxide-semiconductor (CMOS) fabrication technique. We believe the proposed waveguide configuration could offer a potential for developing a CMOS plasmonic platform and can be designed into various components for future integrated THz circuits (ITCs).

7.
Opt Express ; 24(17): 19458-66, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27557223

RESUMO

The photonic density of states (PDOS) is one of the key physical quantities governing the lasing behavior for photonic band-edge lasers. The PDOS is conventionally altered by exploiting the high-Q band-edge mode within a device, which is typically achieved by increasing the contrast of periodic refractive index variation (Δn) or increasing the periodic number of the photonic crystals. In this paper, we propose a different approach to achieve a high-Q band edge mode within an active compound dielectric waveguide grating (CWDG). We demonstrate that the lasing threshold and intensity can be flexibly tuned by changing the filling factors of the CWDG. This design can effectively improve the performance of electrically pumped photonic band-edge lasers.

8.
Opt Lett ; 39(22): 6521-4, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25490509

RESUMO

We experimentally study the effects of UV exposure on a single-mode fiber (SMF) with a fiber multimode interferometer (MMI) based on the singlemode-multimode-singlemode-multimode-singlemode (SMSMS) fiber structure. We observe a wavelength shift of over 33 nm when irradiating the central SMF in the SMSMS fiber structure with a 3-mm-width UV beam (the UV laser has a wavelength of 193 nm and pulse energy of 3 mJ). According to our numerical simulation, the SMSMS fiber structure can achieve a very high refractive-index (RI) sensitivity of 67670 nm/RIU with a very good linearity of R2≈0.9999. The structure can find potential application for high-sensitivity RI sensing by replacing the central SMF with a hollow-core optical fiber filled with the sample under test. The UV exposure technique can be used for tuning the characteristics of fiber MMI devices.

9.
Opt Lett ; 39(4): 973-6, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24562255

RESUMO

In this Letter, a novel waveguide based on hybrid surface plasmon polaritons (HSPPs) is proposed and numerically analyzed. This waveguide consists of two dielectric nanowires placed on both sides of a nanowedge-patterned metal film, which can confine light in the ultra-deep-subwavelength region (ranging from λ²/4000 to λ²/400) with a long propagation length (ranging from 1200 to 3500 µm). Compared to a previous HSPPs waveguide without the nanowedges, with the same propagation length, our proposed structure has much higher mode confinement with 1 order of magnitude smaller normalized mode area. An investigation of the effect of structural perturbations indicates that our proposed waveguide also has good tolerance of fabrication errors. The proposed waveguide could be an interesting alternative structure to realize nanolasers and optical trapping.

10.
Opt Express ; 20(3): 3098-109, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22330547

RESUMO

We proposed a novel optical coupling technique based on two parallel singlemode-multimode-singlemode (SMS) fiber structures. This technique utilizes one SMS structure to excite multiple cladding modes within an output singlemode fiber. The excited multiple cladding modes will be coupled to the input SMF in the second SMS structure by placing the two SMS fiber structures in parallel and in close contact each other. The coupled cladding modes will be re-coupled to a guided core mode by the second SMS fiber structure. Theoretical analysis for such technique was provided and experimentally we have achieved a pass band spectral response with an extinction ratio higher than 20 dB and a maximum coupling efficiency of 5.9%.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Modelos Teóricos , Ressonância de Plasmônio de Superfície/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
11.
Opt Lett ; 36(12): 2197-9, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21685965

RESUMO

A refractive index (RI) sensor based on a novel fiber structure that consists of a single-mode-multimode-single-mode (SMS) fiber structure followed by a fiber Bragg grating was demonstrated. The multimode fiber in the SMS structure excites cladding modes within output single-mode fiber (SMF) and recouple the reflected cladding Bragg wavelength to the input SMF core. By measuring the relative Bragg wavelength shift between core and cladding Bragg wavelengths, the RI can be determined. Experimentally we have achieved a maximum sensitivity of 7.33 nm/RIU (RI unit) at RI range from 1.324 to 1.439.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA