Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomaterials ; 297: 122096, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075614

RESUMO

Conventional chemotherapy for multiple myeloma (MM) faces the challenges of a low complete remission rate and transformation to recurrence/refractory. The current MM first-line clinical drug Bortezomib (BTZ) faces the problem of enhanced tolerance and nonnegligible side effects. B cell maturation antigen (BCMA), for its important engagement in tumor signaling pathways and novel therapy technologies such as Chimeric antigen receptor T-Cell immunotherapy (CAR-T) and Antibody Drug Conjugate (ADC), has been identified as an ideal target and attracted attention in anti-MM therapy. Emerging nanotechnology provided feasible methods for drug delivery and new therapeutic strategies such as photothermal therapy (PTT). Herein, we developed a BCMA-Targeting biomimetic photothermal nanomissile BTZ@BPQDs@EM @anti-BCMA (BBE@anti-BCMA) by integration of BTZ, black phosphorus quantum dots (BPQDs), Erythrocyte membrane (EM) and BCMA antibody (anti-BCMA). We hypothesized that this engineered nanomissile could attack tumor cells in triple ways and achieve effective treatment of MM. Consequently, the intrinsic biomimetic nature of EM and the active targeting property of anti-BCMA enhanced the accumulation of therapeutic agents in the tumor site. Besides, owing to the decrease in BCMA abundance, the potential apoptosis-inducing ability was revealed. With the support of BPQDs' photothermal effect, Cleaved-Caspase-3 and Bax signal increased significantly, and the expression of Bcl-2 was inhibited. Furthermore, the synergistic photothermal/chemo therapy can effectively inhibit tumor growth and reverse the disorder of NF-κB in vivo. Importantly, this biomimetic nanodrug delivery system and antibody induced synergistic therapeutic strategy efficiently killed MM cells with ignorable systemic toxicity, which is a promising method for the future anticancer treatment of hematological malignancies in clinics.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/uso terapêutico , Imunoterapia Adotiva/métodos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/patologia , NF-kappa B/metabolismo , Linfócitos T , Biomimética
2.
Cancers (Basel) ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36900317

RESUMO

Multiple myeloma (MM) is an incurable hematological malignant disorder of bone marrow. Patients with MM receive multiple lines of chemotherapeutic treatments which often develop bortezomib (BTZ) resistance and relapse. Therefore, it is crucial to identify an anti-MM agent to overcome the BTZ resistance of MM. In this study, we screened a library of 2370 compounds against MM wild-type (ARP1) and BTZ-resistant type (ARP1-BR) cell lines and found that periplocin (PP) was the most significant anti-MM natural compound. We further investigated the anti-MM effect of PP by using annexin V assay, clonogenic assays, aldefluor assay, and transwell assay. Furthermore, RNA sequencing (RNA-seq) was performed to predict the molecular effects of PP in MM followed by verification through qRT-PCR and Western blot analysis. Moreover, ARP1 and ARP1-BR xenograft mice models of MM were established to confirm the anti-MM effects of PP invivo. The results showed that PP significantly induced apoptosis, inhibited proliferation, suppressed stemness, and reduced the cell migration of MM. The expression of cell adhesion molecules (CAMs) was suppressed upon PP treatment in vitro and in vivo. Overall, our data recommend PP as an anti-MM natural compound with the potential to overcome BTZ resistance and downregulate CAMs in MM.

3.
Cancer Lett ; 554: 216019, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442773

RESUMO

Multiple myeloma (MM) is an incurable condition and the second most common hematological malignancy. Over the past few years, there has been progress in the treatment of MM, but most patients still relapse. Multiple myeloma stem-like cells (MMSCs) are believed to be the main reason for drug resistance and eventual relapse. Currently, there are not enough therapeutic agents that have been identified for eradication of MMSCs, and thus, identification of the same may alleviate the issue of relapse in patients. In the present study, we showed that luteolin (LUT), a natural compound obtained from different plants, such as vegetables, medicinal herbs, and fruits, effectively inhibits the proliferation of MM cells and overcomes bortezomib (BTZ) resistance in them in vitro and in vivo, mainly by decreasing the proportion of ALDH1+ cells. Furthermore, RNA sequencing after LUT treatment of MM cell lines and an MM xenograft mouse model revealed that the effects of the compound are mediated through inhibition of transforming growth factor-ß signaling. Similarly, we found that LUT also significantly reduced the proportion of ALDH1+ cells in primary CD138+ plasma cells. In addition, LUT could overcome the BTZ treatment-induced increase in the proportion of ALDH1+ cells, and the combination of LUT and BTZ had a synergistic effect against myeloma cells. Collectively, our findings suggested that LUT is a promising agent that manifests MMSCs to overcome BTZ resistance, alone or in combination with BTZ, and thus, is a potential therapeutic drug for the treatment of MM.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Animais , Camundongos , Bortezomib/farmacologia , Mieloma Múltiplo/patologia , Luteolina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Apoptose , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/tratamento farmacológico , Transdução de Sinais , Fator de Crescimento Transformador beta/farmacologia , Antineoplásicos/farmacologia
4.
Biomed Res Int ; 2022: 5646275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845961

RESUMO

Ferroptosis is a type of regulated cell death catalyzed by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Chronic lymphocytic leukemia (CLL) is a chronic lymphoproliferative disorder. However, the understanding of ferroptosis in CLL remains largely poor. In this study, we investigated the stratification and prognostic role of ferroptosis-related genes in CLL patients of ICGC cohort. We obtained fourteen genes with prognostic value by screening 110 ferroptosis-related genes (FRGs). Based on the expression profiles of these 14 genes, we classified CLL patients into two clusters. Most of the FRGs were highly expressed in cluster 1, and cluster 1 was associated with better overall survival (OS). Subsequently, we developed an eight-gene signature (TP63, STEAP3, NQO1, ELAVL1, PRKAA1, HELLS, FANCD2, and CDKN2A) by using LASSO analysis. This risk signature divided CLL patients into high- and low-risk groups. We used Cox regression analysis and ROC analysis demonstrated the risk signature was reliable and robust. And we validated the risk model in an external cohort (GSE22762). We also conducted enrichment analysis and genomic mutation analysis. Finally, we explored the potential effect of chemotherapy between the two risk groups. Our study contributed to understanding the role of ferroptosis in CLL and facilitated personalized and precision treatment.


Assuntos
Ferroptose , Leucemia Linfocítica Crônica de Células B , Estudos de Coortes , Ferroptose/genética , Genes p16 , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA