Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Res Pract Thromb Haemost ; 7(1): 100006, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36970736

RESUMO

Background: The platelet population is heterogeneous, with different subsets that differ on the basis of their function and reactivity. An intrinsic factor participating in this difference of reactivity could be the platelet age. The lack of relevant tools allowing a formal identification of young platelets prevents so far to draw solid conclusions regarding platelet reactivity. We recently reported that human leukocyte antigen-I (HLA-I) molecules are more expressed on human young platelets. Objectives: The aim of this study was to assess platelet reactivity according to their age based on HLA-I expression level. Methods: Platelet activation was assessed by flow cytometry (FC) for different platelet subsets based on their HLA-I expression. These populations were further cell sorted and their intrinsic properties were determined by FC and electron microscopy (EM). Statistical analyses were performed with GraphPad Prism 5.02 software using two-way ANOVA followed by a Tukey post hoc test. Results: HLA-I expression level allowed the identification of 3 platelet subpopulations regarding to their age (HLA low, dim, and high). HLA-I was reliable to guide platelet cell sorting and highlighted the features of young platelets in the HLA-Ihigh population. In response to different soluble agonists, HLA-Ihigh platelets were the most reactive subset as shown by the level of P-selectin secretion and fibrinogen binding assessed by flow cytometry. Moreover, the highest capacity of HLA-Ihigh platelets to simultaneously express annexin-V and von Willebrand factor or activated αIIbß3 after coactivation with TRAP and CRP indicated that the procoagulant feature of platelets was age-related. Conclusion: The young HLA-Ihigh population is the most reactive and prone to become procoagulant. These results open up new perspectives to investigate deeply the role of young and old platelets.

2.
Front Immunol ; 14: 1125367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845153

RESUMO

Patients with hematological disorders and severe thrombocytopenia require extensive and iterative platelet transfusion support. In these patients, platelet transfusion refractoriness represents a serious adverse transfusion event with major outcomes for patient care. Recipient alloantibodies against the donor HLA Class I antigens expressed at the cell surface of platelets result in a rapid removal of transfused platelets from the circulation and thus, therapeutic and prophylactic transfusion failure leading to a major bleeding risk. In this case, the only way to support the patient relies on the selection of HLA Class I compatible platelets, an approach restricted by the limited number of HLA-typed donors available and the difficulty of meeting the demand in an emergency. However, not all patients with anti-HLA Class I antibodies develop refractoriness to platelet transfusions, raising the question of the intrinsic characteristics of the antibodies and the immune-mediated mechanisms of platelet clearance associated with a refractory state. In this review, we examine the current challenges in platelet transfusion refractoriness and detail the key features of the antibodies involved that should be considered. Finally, we also provide an overview of future therapeutic strategies.


Assuntos
Transfusão de Plaquetas , Trombocitopenia , Humanos , Transfusão de Plaquetas/efeitos adversos , Isoanticorpos , Antígenos HLA , Trombocitopenia/terapia , Trombocitopenia/etiologia , Plaquetas
3.
Blood Adv ; 7(8): 1356-1365, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36490266

RESUMO

Alloimmunization against platelets remains a potentially serious adverse transfusion event. Alloantibodies produced by the recipient, mainly directed against human leukocyte antigen class I donor antigens, can compromise the therapeutic efficacy of subsequent transfusions, and may lead to refractoriness. Because the mechanism of anti-HLA alloantibody formation is poorly understood, this study aimed to identify the cells involved in the platelet immune response by focusing on the spleen, the main organ that orchestrates this alloimmune response. In the spleen, transfused allogeneic platelets are located in the marginal zone and interact with marginal zone B (MZB) cells, a specialized B-cell population implicated in the capture and follicular delivery of blood-borne antigens. To study the involvement of MZB cells in alloantibody production, we used a murine model reproducing major histocompatibility complex incompatibility between a donor (H2b) and recipient (H2d) that occurs during platelet transfusion. Following weekly H2b platelet transfusions, recipient H2d mice produced anti-H2b immunoglobulin G, which induced a refractory state upon subsequent transfusions. Specific immunodepletion of MZB cells or their displacement from the marginal zone to the B-cell follicles by treatment with an S1P1 antagonist before each transfusion prevented significant alloantibody formation. Under these conditions, transfused platelets were still circulating after 24 hours, whereas they were rapidly removed from circulation in alloimmunized mice. The identification of MZB cells as key players in the platelet alloimmune response opens up new perspectives for minimizing platelet alloimmunization and avoiding the associated refractory state in frequently transfused patients.


Assuntos
Isoanticorpos , Transfusão de Plaquetas , Camundongos , Humanos , Animais , Transfusão de Plaquetas/efeitos adversos , Plaquetas , Transfusão de Sangue , Linfócitos B , Antígenos
4.
Blood Adv ; 7(1): 46-59, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36269841

RESUMO

Mice lacking the immunoreceptor tyrosine-based inhibition motif-containing co-inhibitory receptor G6b-B (Mpig6b, G6b knockout, KO) are born with a complex megakaryocyte (MK) per platelet phenotype, characterized by severe macrothrombocytopenia, expansion of the MK population, and focal myelofibrosis in the bone marrow and spleen. Platelets are almost completely devoid of the glycoprotein VI (GPVI)-FcRγ-chain collagen receptor complex, have reduced collagen integrin α2ß1, elevated Syk tyrosine kinase activity, and a subset has increased surface immunoglobulins. A similar phenotype was recently reported in patients with null and loss-of-function mutations in MPIG6B. To better understand the cause and treatment of this pathology, we used pharmacological- and genetic-based approaches to rescue platelet counts and function in G6b KO mice. Intravenous immunoglobulin resulted in a transient partial recovery of platelet counts, whereas immune deficiency did not affect platelet counts or receptor expression in G6b KO mice. Syk loss-of-function (R41A) rescued macrothrombocytopenia, GPVI and α2ß1 expression in G6b KO mice, whereas treatment with the Syk kinase inhibitor BI1002494 partially rescued platelet count but had no effect on GPVI and α2ß1 expression or bleeding. The Src family kinase inhibitor dasatinib was not beneficial in G6b KO mice. In contrast, treatment with the thrombopoietin mimetic romiplostim rescued thrombocytopenia, GPVI expression, and platelet reactivity to collagen, suggesting that it may be a promising therapeutic option for patients lacking functional G6b-B. Intriguingly, GPVI and α2ß1 expression were significantly downregulated in romiplostim-treated wild-type mice, whereas GPVI was upregulated in romiplostim-treated G6b KO mice, suggesting a cell intrinsic feedback mechanism that autoregulates platelet reactivity depending on physiological needs.


Assuntos
Plaquetas , Trombocitopenia , Camundongos , Animais , Plaquetas/metabolismo , Megacariócitos/metabolismo , Trombocitopenia/genética , Quinases da Família src/metabolismo , Colágeno/metabolismo
6.
Blood Adv ; 5(23): 4817-4830, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521102

RESUMO

Transfusion-related acute lung injury (TRALI) remains a major cause of transfusion-related fatalities. The mechanism of human antibody-mediated TRALI, especially the involvement of the Fcγ receptors, is not clearly established. Contrary to mice, human platelets are unique in their expression of the FcγRIIA/CD32A receptor, suggesting that our understanding of the pathogenesis of antibody-mediated TRALI is partial, as the current murine models incompletely recapitulate the human immunology. We evaluated the role of FcγRIIA/CD32A in TRALI using a humanized mouse model expressing the FcγRIIA/CD32A receptor. When challenged with a recombinant chimeric human immunoglobulin G1/mouse anti-major histocompatibility complex class I monoclonal antibody, these mice exhibited exacerbated alveolar edema and higher mortality compared with wild-type (WT) mice. Unlike in WT mice, monocytes/macrophages in CD32A+ mice were accessory for TRALI initiation, indicating the decisive contribution of another cell type. Platelet activation was dramatically increased in CD32A+ animals, resulting in their increased consumption and massive release of their granule contents. Platelet depletion prevented the exacerbation of TRALI in CD32A+ mice but did not affect TRALI in WT animals. By blocking platelet serotonin uptake with fluoxetine, we showed that the severity of TRALI in CD32A+ mice resulted from the serotonin released by the activated platelets. Furthermore, inhibition of 5-hydroxytryptamine 2A serotonin receptor with sarpogrelate, before or after the induction of TRALI, abolished the aggravation of lung edema in CD32A+ mice. Our findings show that platelet FcγRIIA/CD32A activation exacerbates antibody-mediated TRALI and provide a rationale for designing prophylactic and therapeutic strategies targeting the serotonin pathway to attenuate TRALI in patients.


Assuntos
Lesão Pulmonar Aguda Relacionada à Transfusão , Animais , Plaquetas , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Receptores de IgG/genética , Serotonina
7.
J Thromb Haemost ; 17(9): 1511-1521, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31207003

RESUMO

BACKGROUND: Accurate identification of the proportion of young platelets is important to distinguish peripheral thrombocytopenia from a deficit in platelet production. Young platelets are defined by their higher RNA content and are often assessed as thiazole orange bright (TObright ) by flow cytometry. In clinical practice, their proportion is estimated by automatic blood counter according to their greater RNA content, which identifies a so-called immature platelet fraction (IPF). However, the detected IPFs are not strictly identical to the young TObright platelet population observed by flow cytometry. OBJECTIVES: The aim of this study was to assess the reliability of HLA I/major histocompatibility I (MHC I) cell surface expression as a marker of young platelets. METHODS: The HLA I/MHC I expression was evaluated by flow cytometry after costaining blood with TO and antibodies directed against HLA I/MHC I molecules. RESULTS: We found that platelets with a higher expression of plasma membrane-localized MHC I molecules displayed an increased TO staining and a higher content in ribosomal P-antigen. Transfusion experiments in mice showed that the number of MHC I molecules expressed on the cell surface of young murine platelets decreased during platelet aging, reaching basal levels within 24 h. Finally, we demonstrated that for patients with thrombocytopenias, the identification of young platelets is better assessed by the flow cytometric determination of the level of HLA I expression than by TO staining or the use of hematological blood counter. CONCLUSION: Overall, our results highlight the relevance of MHC I/HLA I expression as a valuable parameter to identify young platelets.


Assuntos
Plaquetas/citologia , Antígenos de Histocompatibilidade Classe I/sangue , Adulto , Animais , Benzotiazóis , Biomarcadores , Contagem de Células Sanguíneas/métodos , Transtornos Plaquetários/sangue , Plaquetas/química , Separação Celular , Senescência Celular , Feminino , Citometria de Fluxo , Corantes Fluorescentes , Expressão Gênica , Antígenos H-2/biossíntese , Antígenos H-2/sangue , Perda Auditiva Neurossensorial/sangue , Antígenos de Histocompatibilidade Classe I/biossíntese , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Fator Plaquetário 4/genética , Transfusão de Plaquetas , Quinolinas , RNA/sangue , Trombocitopenia/sangue , Trombocitopenia/congênito , Adulto Jovem
8.
Sci Rep ; 9(1): 5159, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914724

RESUMO

The biological responses that control the development of Transfusion-Related Acute Lung Injury (TRALI), a serious post-transfusion respiratory syndrome, still need to be clarified. Since extracellular nucleotides and their P2 receptors participate in inflammatory processes as well as in cellular responses to stress, we investigated the role of the ATP-gated P2X1 cation channel in antibody-mediated TRALI. The effects of NF449, a selective P2X1 receptor (P2RX1) antagonist, were analyzed in a mouse two-hit model of TRALI. Mice were primed with lipopolysaccharide (LPS) and 24 h later challenged by administrating an anti-MHC I antibody. The selective P2RX1 antagonist NF449 was administrated before the administration of LPS and/or the anti-MHC I antibody. When given before antibody administration, NF449 improved survival while maximal protection was achieved when NF449 was also administrated before the sensitization step. Under this later condition, protein contents in bronchoalveolar lavages were dramatically reduced. Cell depletion experiments indicated that monocytes/macrophages, but not neutrophils, contribute to this effect. In addition, the reduced lung periarteriolar interstitial edemas in NF449-treated mice suggested that P2RX1 from arteriolar smooth muscle cells could represent a target of NF449. Accordingly, inhibition of TRPC6, another cation channel expressed by smooth muscle cells, also reduced TRALI-associated pulmonary interstitial and alveolar edemas. These data strongly suggest that cation channels like P2RX1 or TRPC6 participate to TRALI pathological responses.


Assuntos
Trifosfato de Adenosina/metabolismo , Anticorpos/efeitos adversos , Ativação do Canal Iônico , Receptores Purinérgicos P2X1/metabolismo , Índice de Gravidade de Doença , Lesão Pulmonar Aguda Relacionada à Transfusão/induzido quimicamente , Lesão Pulmonar Aguda Relacionada à Transfusão/metabolismo , Animais , Benzenossulfonatos/farmacologia , Indanos/farmacologia , Inflamação/patologia , Masculino , Camundongos Endogâmicos BALB C , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Substâncias Protetoras/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia
9.
PLoS One ; 11(1): e0148064, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26808079

RESUMO

Previous investigations have indicated that RNAs are mostly present in the minor population of the youngest platelets, whereas translation in platelets could be biologically important. To attempt to solve this paradox, we studied changes in the RNA content of reticulated platelets, i.e., young cells brightly stained by thiazole orange (TObright), a fluorescent probe for RNAs. We provoked in mice strong thrombocytopenia followed by dramatic thrombocytosis characterized by a short period with a vast majority of reticulated platelets. During thrombocytosis, the TObright platelet count rapidly reached a maximum, after which TOdim platelets accumulated, suggesting that most of the former were converted into the latter within 12 h. Experiments on platelets, freshly isolated or incubated ex vivo at 37°C, indicated that their "RNA content", here corresponding to the amounts of extracted RNA, and the percentage of TObright platelets were positively correlated. The "RNA Content" normalized to the number of platelets could be 20 to 40 fold higher when 80-90% of the cells were reticulated (20-40 fg/platelet), than when only 5-10% of control cells were TObright (less than 1fg/platelet). TObright platelets, incubated ex vivo at 37°C or transfused into mice, became TOdim within 24 h. Ex vivo at 37°C, platelets lost about half of their ribosomal and beta actin RNAs within 6 hours, and more than 98% of them after 24 hours. Accordingly, fluorescence in situ hybridization techniques confirmed the presence of beta actin mRNAs in most reticulated-enriched platelets, but detected them in only a minor subset of control platelets. In vitro, constitutive translation decreased considerably within less than 6 hours, questioning how protein synthesis in platelets, especially in non-reticulated ones, could have a biological function in vivo. Nevertheless, constitutive transient translation in young platelets under pathological conditions characterized by a dramatic increase in circulating reticulated platelets could deserve to be investigated.


Assuntos
Plaquetas/metabolismo , Biossíntese de Proteínas , Estabilidade de RNA/fisiologia , RNA Mensageiro/genética , RNA Ribossômico/genética , Animais , Feminino , Hibridização in Situ Fluorescente , Camundongos , Trombocitose
10.
J Immunol ; 195(10): 4650-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26459352

RESUMO

Type I IFNs (IFN-I) are cytokines that can mediate both immune suppression and activation. Dendritic cells (DC) are significant producers of IFN-I, and depending on the context (nature of Ag, duration of exposure to Ag), DC-derived IFN-I can have varying effects on CD8(+) T cell responses. In this study, we report that in the context of a CD8(+) T cell response to a self-Ag, DC-intrinsic expression of IFN regulatory factor 3 is required to induce optimal proliferation and migration of autoreactive CD8(+) T cells, ultimately determining their ability to infiltrate a target tissue (pancreas), and the development of glucose intolerance in rat insulin promoter-glycoprotein (RIP-GP) mice. Moreover, we show that signals through the lymphotoxin-ß receptor (LTßR) in DC are also required for the proliferation of autoreactive CD8(+) T cells, the upregulation of VLA4/LFA1 on activated CD8(+) T cells, and their subsequent infiltration into the pancreas both in vitro and in vivo. Importantly, the defects in autoreactive CD8(+) T cell proliferation, accumulation of CD8(+) T cells in the pancreas, and consequent glucose intolerance observed in the context of priming by LTßR(-/-) DC could be rescued by exogenous addition of IFN-I. Collectively, our data demonstrate that the LTßR/IFN-I axis is essential for programming of CD8(+) T cells to mediate immunopathology in a self-tissue. A further understanding of the IFN-I/LTßR axis will provide valuable therapeutic insights for treatment of CD8(+) T cell-mediated autoimmune diseases.


Assuntos
Autoantígenos/imunologia , Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Linfócitos T CD8-Positivos/imunologia , Interferon Tipo I/imunologia , Receptor beta de Linfotoxina/imunologia , Animais , Diferenciação Celular/imunologia , Movimento Celular/imunologia , Proliferação de Células , Células Cultivadas , Células Dendríticas/imunologia , Intolerância à Glucose/imunologia , Inflamação/imunologia , Fator Regulador 3 de Interferon/imunologia , Ativação Linfocitária/imunologia , Antígeno-1 Associado à Função Linfocitária/biossíntese , Receptor beta de Linfotoxina/genética , Linfotoxina-beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/citologia , Pâncreas/imunologia
11.
J Immunol ; 194(2): 739-49, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25480563

RESUMO

Extracellular ATP is becoming increasingly recognized as an important regulator of inflammation. However, the known repertoire of P2 receptor subtypes responsible for the proinflammatory effects of ATP is sparse. We looked at whether the P2X1 receptor, an ATP-gated cation channel present on platelets, neutrophils, and macrophages, participates in the acute systemic inflammation provoked by LPS. Compared with wild-type (WT) mice, P2X1(-/-) mice displayed strongly diminished pathological responses, with dampened neutrophil accumulation in the lungs, less tissue damage, reduced activation of coagulation, and resistance to LPS-induced death. P2X1 receptor deficiency also was associated with a marked reduction in plasma levels of the main proinflammatory cytokines and chemokines induced by LPS. Interestingly, macrophages and neutrophils isolated from WT and P2X1(-/-) mice produced similar levels of proinflammatory cytokines when stimulated with LPS in vitro. Intravital microscopy revealed a defect in LPS-induced neutrophil emigration from cremaster venules into the tissues of P2X1(-/-) mice. Using adoptive transfer of immunofluorescently labeled neutrophils from WT and P2X1(-/-) mice into WT mice, we demonstrate that the absence of the P2X1 receptor on neutrophils was responsible for this defect. This study reveals a major role for the P2X1 receptor in LPS-induced lethal endotoxemia through its critical involvement in neutrophil emigration from venules.


Assuntos
Endotoxemia/imunologia , Lipopolissacarídeos/toxicidade , Pulmão/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Receptores Purinérgicos P2X1/imunologia , Animais , Coagulação Sanguínea/efeitos dos fármacos , Coagulação Sanguínea/genética , Coagulação Sanguínea/imunologia , Endotoxemia/induzido quimicamente , Endotoxemia/genética , Endotoxemia/patologia , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/genética , Neutrófilos/patologia , Receptores Purinérgicos P2X1/genética
12.
Biochem J ; 419(3): 661-8, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19196239

RESUMO

CD1e displays unique features in comparison with other CD1 proteins. CD1e accumulates in Golgi compartments of immature dendritic cells and is transported directly to lysosomes, where it is cleaved into a soluble form. In these latter compartments, CD1e participates in the processing of glycolipid antigens. In the present study, we show that the N-terminal end of the membrane-associated molecule begins at amino acid 20, whereas the soluble molecule consists of amino acids 32-333. Thus immature CD1e includes an N-terminal propeptide which is cleaved in acidic compartments and so is absent from its mature endosomal form. Mutagenesis experiments demonstrated that the propeptide controls the assembly of the CD1e alpha-chain with beta(2)-microglobulin, whereas propeptide-deleted CD1e molecules are immunologically active. Comparison of CD1e cDNAs from different mammalian species indicates that the CD1e propeptide is conserved during evolution, suggesting that it may also optimize the generation of CD1e molecules in other species.


Assuntos
Antígenos CD1/metabolismo , Compartimento Celular , Endossomos/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Aminoácidos , Animais , Antígenos CD1/química , Linhagem Celular , Membrana Celular/metabolismo , Drosophila , Retículo Endoplasmático/metabolismo , Humanos , Lisossomos/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeos/química , Processamento de Proteína Pós-Traducional , Sinais Direcionadores de Proteínas , Solubilidade
13.
J Immunol ; 180(6): 3642-6, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18325888

RESUMO

The human CD1a-d proteins are plasma membrane molecules involved in the presentation of lipid Ags to T cells. In contrast, CD1e is an intracellular protein present in a soluble form in late endosomes or lysosomes and is essential for the processing of complex glycolipid Ags such as hexamannosylated phosphatidyl-myo-inositol, PIM(6). CD1e is formed by the association of beta(2)-microglobulin with an alpha-chain encoded by a polymorphic gene. We report here that one variant of CD1e with a proline at position 194, encoded by allele 4, does not assist PIM(6) presentation to CD1b-restricted specific T cells. The immunological incompetence of this CD1e variant is mainly due to inefficient assembly and poor transport of this molecule to late endosomal compartments. Although the allele 4 of CD1E is not frequent in the population, our findings suggest that homozygous individuals might display an altered immune response to complex glycolipid Ags.


Assuntos
Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Antígenos CD1/genética , Antígenos CD1/metabolismo , Glicoproteínas/metabolismo , Mutação , Alelos , Substituição de Aminoácidos/genética , Substituição de Aminoácidos/imunologia , Animais , Antígenos CD1/fisiologia , Linhagem Celular Tumoral , Células Clonais , Endossomos/genética , Endossomos/imunologia , Endossomos/metabolismo , Gangliosídeos/genética , Gangliosídeos/metabolismo , Glicolipídeos/genética , Glicolipídeos/metabolismo , Glicolipídeos/fisiologia , Glicoproteínas/genética , Glicoproteínas/fisiologia , Humanos , Polimorfismo Genético , Processamento de Proteína Pós-Traducional/imunologia , Transporte Proteico/genética , Transporte Proteico/imunologia
14.
Traffic ; 9(4): 431-45, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18208508

RESUMO

CD1e is a membrane-associated protein predominantly detected in the Golgi compartments of immature human dendritic cells. Without transiting through the plasma membrane, it is targeted to lysosomes (Ls) where it remains as a cleaved and soluble form and participates in the processing of glycolipidic antigens. The role of the cytoplasmic tail of CD1e in the control of its intracellular pathway was studied. Experiments with chimeric molecules demonstrated that the cytoplasmic domain determines a cellular pathway that conditions the endosomal cleavage of these molecules. Other experiments showed that the C-terminal half of the cytoplasmic tail mediates the accumulation of CD1e in Golgi compartments. The cytoplasmic domain of CD1e undergoes monoubiquitinations, and its ubiquitination profile is maintained when its N- or C-terminal half is deleted. Replacement of the eight cytoplasmic lysines by arginines results in a marked accumulation of CD1e in trans Golgi network 46+ compartments, its expression on the plasma membrane and a moderate slowing of its transport to Ls. Fusion of this mutated form with ubiquitin abolishes the accumulation of CD1e molecules in the Golgi compartments and restores the kinetics of their transport to Ls. Thus, ubiquitination of CD1e appears to trigger its exit from Golgi compartments and its transport to endosomes. This ubiquitin-dependent pathway may explain several features of the very particular intracellular traffic of CD1e in dendritic cells compared with other CD1 molecules.


Assuntos
Antígenos CD1/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD1/química , Antígenos CD1/genética , Transporte Biológico/fisiologia , Células Dendríticas/metabolismo , Endossomos/metabolismo , Endossomos/ultraestrutura , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
15.
Science ; 310(5752): 1321-4, 2005 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-16311334

RESUMO

Complexes between CD1 molecules and self or microbial glycolipids represent important immunogenic ligands for specific subsets of T cells. However, the function of one of the CD1 family members, CD1e, has yet to be determined. Here, we show that the mycobacterial antigens hexamannosylated phosphatidyl-myo-inositols (PIM6) stimulate CD1b-restricted T cells only after partial digestion of the oligomannose moiety by lysosomal alpha-mannosidase and that soluble CD1e is required for this processing. Furthermore, recombinant CD1e was able to bind glycolipids and assist in the digestion of PIM6. We propose that, through this form of glycolipid editing, CD1e helps expand the repertoire of glycolipidic T cell antigens to optimize antimicrobial immune responses.


Assuntos
Apresentação de Antígeno , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Antígenos CD1/metabolismo , Glicolipídeos/imunologia , Fosfatidilinositóis/imunologia , Fosfatidilinositóis/metabolismo , Acilação , Células Apresentadoras de Antígenos/imunologia , Antígenos CD1/química , Antígenos CD1/genética , Antígenos CD1/imunologia , Linhagem Celular Tumoral , Células Dendríticas/enzimologia , Células Dendríticas/imunologia , Glicolipídeos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Ativação Linfocitária , Modelos Moleculares , Mycobacterium tuberculosis/imunologia , Conformação Proteica , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Solubilidade , Linfócitos T/imunologia , Transfecção , alfa-Manosidase/imunologia
16.
Traffic ; 6(4): 286-302, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15752135

RESUMO

Dendritic cells (DCs) present antigens to T cells via CD1, HLA class I or class II molecules. During maturation, HLA class II-restricted presentation is optimized. The relocalization of CD1e from Golgi to endosomal compartments during DC maturation suggests also an optimization of the antigen-presentation pathway via CD1 molecules. We here detail the biosynthesis and cellular pathway of CD1e in immature and maturing DCs. Unlike the other CD1 molecules, CD1e was found to reach late endosomes through sorting endosomes, without passing through the plasma membrane in either immature or maturing cells. After induction of DC maturation, CD1e disappeared rapidly from the Golgi and was transiently localized in HLA-DR+ vesicles, while the number of CD1e+/CD1b+ compartments increased for at least 20 h. High-resolution light microscopy showed that, in immature DCs, CD1e+ vesicles were often in close apposition to EEA1+ or HLA-DR+ compartments, while CD1e displayed a nearly exclusive distribution in the lysosomes of mature DCs, a finding corroborated by immunoelectron microscopy. During maturation, CD1e synthesis progressively declined, while the endosomal cleavage of CD1e still occurred. Thus, CD1e displays peculiar properties, suggesting an unexpected role among the family of CD1 antigen-presenting molecules.


Assuntos
Antígenos CD1/metabolismo , Diferenciação Celular , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Membrana Celular/metabolismo , Células Dendríticas/efeitos dos fármacos , Endossomos/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Microscopia Imunoeletrônica , Inibidores de Proteases/farmacologia , Transporte Proteico
17.
Immunogenetics ; 54(12): 842-9, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12671734

RESUMO

In humans, a family of five genes encodes the CD1 molecules. Four of these proteins, CD1a, b, c, and d, are expressed on the plasma membrane and traffic between the cell surface and endocytic compartments, where they are loaded with antigenic glycolipids. The existence of human CD1e was demonstrated recently. This molecule surprisingly remains inside the cell, accumulating mainly in the Golgi compartments of immature dendritic cells and in the late endosomes of mature dendritic cells. In the latter compartments, CD1e is cleaved and becomes soluble. To determine whether these properties were specific to human CD1e, we investigated the presence and characteristics of CD1e in the rhesus macaque, an evolutionarily distant species of the primate lineage. Our results show that the cellular and biochemical properties of the human and simian CD1e molecules are similar, suggesting that the particular intracellular distribution of CD1e is important for its physiological and/or immunological function.


Assuntos
Antígenos CD1/genética , Antígenos CD1/metabolismo , Evolução Molecular , Macaca mulatta/genética , Macaca mulatta/imunologia , Sequência de Aminoácidos , Animais , Antígenos CD1/química , Sequência de Bases , DNA Complementar/genética , Células Dendríticas/imunologia , Humanos , Dados de Sequência Molecular , Monócitos/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA