Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Blood ; 143(13): 1242-1258, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38096363

RESUMO

ABSTRACT: To establish a strict p53-dependent gene-expression profile, TP53-/- clones were derived from TP53+/+ and TP53-/mut t(4;14) human myeloma cell lines (HMCLs) using CRISPR/Cas9 technology. From the 17 dysregulated genes shared between the TP53-/- clones from TP53+/+ HMCLs, we established a functional p53 score, involving 13 genes specifically downregulated upon p53 silencing. This functional score segregated clones and myeloma cell lines as well as other cancer cell lines according to their TP53 status. The score efficiently identified samples from patients with myeloma with biallelic TP53 inactivation and was predictive of overall survival in Multiple Myeloma Research Foundation-coMMpass and CASSIOPEA cohorts. At the functional level, we showed that among the 13 genes, p53-regulated BAX expression correlated with and directly affected the MCL1 BH3 mimetic S63845 sensitivity of myeloma cells by decreasing MCL1-BAX complexes. However, resistance to S63845 was overcome by combining MCL1 and BCL2 BH3 mimetics, which displayed synergistic efficacy. The combination of BH3 mimetics was effective in 97% of patient samples with or without del17p. Nevertheless, single-cell RNA sequencing analysis showed that myeloma cells surviving the combination had lower p53 score, showing that myeloma cells with higher p53 score were more sensitive to BH3 mimetics. Taken together, we established a functional p53 score that identifies myeloma cells with biallelic TP53 invalidation, demonstrated that p53-regulated BAX is critical for optimal cell response to BH3 mimetics, and showed that MCL1 and BCL2 BH3 mimetics in combination may be of greater effectiveness for patients with biallelic TP53 invalidation, for whom there is still an unmet medical need.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Pirimidinas , Tiofenos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular Tumoral , Apoptose , Antineoplásicos/uso terapêutico
2.
Front Oncol ; 13: 1196005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534243

RESUMO

Secondary plasma cell leukemia (sPCL) is a rare form of aggressive plasma cell malignancy arising mostly at end-stage refractory multiple myeloma and consequently presenting limited therapeutic options. We analyzed 13 sPCL for their sensitivity to BH3 mimetics targeting either BCL2 (venetoclax) or BCLXL (A1155463) and showed that 3 sPCL were efficiently killed by venetoclax and 3 sPCL by A1155463. Accordingly, BH3 profiling of 2 sPCL sensitive to BCLXL inhibition confirmed their high BCLXL primed profile. While targeting BCLXL using BH3 mimetics induces platelets on-target drug toxicity, the recent development of DT2216, a clinical-stage BCLXL proteolysis targeting chimera PROTAC compound, provides an alternative strategy to target BCLXL. Indeed, DT2216 specifically degrades BCLXL via VHL E3 ligase, without inducing thrombocytopenia. We demonstrated in human myeloma cell lines and sPCL that sensitivity to DT2216 strongly correlated with the sensitivity to A1155463. Interestingly, we showed that low doses of DT2216 (nM range) were sufficient to specifically degrade BCLXL after 48 hours of treatment, consistent with VHL expression, in all cell lines but irrespectively to DT2216 sensitivity. In myeloma cells, DT2216 induced apoptotic cell death and triggered BAX and BAK activation. In conclusion, our study demonstrated that patients with sPCL addicted to BCLXL, a small but a very challenging group, could potentially receive therapeutic benefit from DT2216. Clinical trials of DT2216 in this subset of sPCL patients are warranted.

3.
Cell Death Dis ; 11(5): 316, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371863

RESUMO

Multiple myeloma is a plasma cell malignancy that escapes from apoptosis by heterogeneously over-expressing anti-apoptotic BCL2 proteins. Myeloma cells with a t(11;14) translocation present a particular vulnerability to BCL2 inhibition while a majority of myeloma cells relies on MCL1 for survival. The present study aimed to determine whether the combination of BCL2 and MCL1 inhibitors at low doses could be of benefit for myeloma cells beyond the single selective inhibition of BCL2 or MCL1. We identified that half of patients were not efficiently targeted neither by BCL2 inhibitor nor MCL1 inhibitor. Seventy percent of these myeloma samples, either from patients at diagnosis or relapse, presented a marked increase of apoptosis upon low dose combination of both inhibitors. Interestingly, primary cells from a patient in progression under venetoclax treatment were not sensitive ex vivo to neither venetoclax nor to MCL1 inhibitor, whereas the combination of both efficiently induced cell death. This finding suggests that the combination could overcome venetoclax resistance. The efficacy of the combination was also confirmed in U266 xenograft model resistant to BCL2 and MCL1 inhibitors. Mechanistically, we demonstrated that the combination of both inhibitors favors apoptosis in a BAX/BAK dependent manner. We showed that activated BAX was readily increased upon the inhibitor combination leading to the formation of BAK/BAX hetero-complexes. We found that BCLXL remains a major resistant factor of cell death induced by this combination. The present study supports a rational for the clinical use of venetoclax/S63845 combination in myeloma patients with the potential to elicit significant clinical activity when both single inhibitors would not be effective but also to overcome developed in vivo venetoclax resistance.


Assuntos
Mieloma Múltiplo/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Pirimidinas/farmacologia , Tiofenos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/efeitos dos fármacos , Recidiva Local de Neoplasia/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
4.
J Hematol Oncol ; 11(1): 137, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545397

RESUMO

BACKGROUND: Human myeloma cell lines (HMCLs) are widely used for their representation of primary myeloma cells because they cover patient diversity, although not fully. Their genetic background is mostly undiscovered, and no comprehensive study has ever been conducted in order to reveal those details. METHODS: We performed whole-exon sequencing of 33 HMCLs, which were established over the last 50 years in 12 laboratories. Gene expression profiling and drug testing for the 33 HMCLs are also provided and correlated to exon-sequencing findings. RESULTS: Missense mutations were the most frequent hits in genes (92%). HMCLs harbored between 307 and 916 mutations per sample, with TP53 being the most mutated gene (67%). Recurrent bi-allelic losses were found in genes involved in cell cycle regulation (RB1, CDKN2C), the NFκB pathway (TRAF3, BIRC2), and the p53 pathway (TP53, CDKN2A). Frequency of mutations/deletions in HMCLs were either similar to that of patients (e.g., DIS3, PRDM1, KRAS) or highly increased (e.g., TP53, CDKN2C, NRAS, PRKD2). MAPK was the most altered pathway (82% of HMCLs), mainly by RAS mutants. Surprisingly, HMCLs displayed alterations in epigenetic (73%) and Fanconi anemia (54%) and few alterations in apoptotic machinery. We further identified mutually exclusive and associated mutations/deletions in genes involved in the MAPK and p53 pathways as well as in chromatin regulator/modifier genes. Finally, by combining the gene expression profile, gene mutation, gene deletion, and drug response, we demonstrated that several targeted drugs overcome or bypass some mutations. CONCLUSIONS: With this work, we retrieved genomic alterations of HMCLs, highlighting that they display numerous and unprecedented abnormalities, especially in DNA regulation and repair pathways. Furthermore, we demonstrate that HMCLs are a reliable model for drug screening for refractory patients at diagnosis or at relapse.


Assuntos
Reparo do DNA/genética , DNA/genética , Mieloma Múltiplo/genética , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Éxons , Humanos , Mieloma Múltiplo/metabolismo , Mutação
5.
Blood ; 132(25): 2656-2669, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30309889

RESUMO

BH3 mimetics are promising drugs for hematologic malignancies that trigger cell death by promoting the release of proapoptotic BCL2 family members from antiapoptotic proteins. Multiple myeloma is considered to be a disease dependent mainly on MCL1 for survival, based mostly on studies using cell lines. We used a BH3-mimetic toolkit to study the dependency on BCL2, BCLXL, or MCL1 in malignant plasma cells from 60 patients. Dependencies were analyzed using an unbiased BH3 mimetics cell-death clustering by k-means. In the whole cohort of patients, BCL2 dependency was mostly found in the CCND1 subgroup (83%). Of note, MCL1 dependence significantly increased from 33% at diagnosis to 69% at relapse, suggesting a plasticity of the cellular dependency favoring MCL1 dependencies at relapse. In addition, 35% of overall patient samples showed codependencies on either BCL2/MCL1 or BCLXL/MCL1. Finally, we identified a group of patients not targeted by any of the BH3 mimetics, predominantly at diagnosis in patients not presenting the common recurrent translocations. Mechanistically, we demonstrated that BAK is crucial for cell death induced by MCL1 mimetic A1210477, according to the protection from cell death observed by BAK knock-down, as well as the complete and early disruption of MCL1/BAK complexes on A1210477 treatment. Interestingly, this complex was also dissociated in A1210477-resistant cells, but free BAK was simultaneously recaptured by BCLXL, supporting the role of BCLXL in A1210477 resistance. In conclusion, our study opens the way to rationally use venetoclax and/or MCL1 BH3 mimetics for clinical evaluation in myeloma at both diagnosis and relapse.


Assuntos
Antineoplásicos , Materiais Biomiméticos , Mieloma Múltiplo , Proteína de Sequência 1 de Leucemia de Células Mieloides , Fragmentos de Peptídeos , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas , Antineoplásicos/química , Antineoplásicos/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Linhagem Celular Tumoral , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
6.
Oncotarget ; 9(28): 20075-20088, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29732004

RESUMO

Escape from apoptosis is one of the major hallmarks of cancer cells. The B-cell Lymphoma 2 (BCL-2) gene family encodes pro-apoptotic and anti-apoptotic proteins that are key regulators of the apoptotic process. Overexpression of the pro-survival member BCL-2 is a well-established mechanism contributing to oncogenesis and chemoresistance in several cancers, including lymphoma and leukemia. Thus, BCL-2 has become an attractive target for therapeutic strategy in cancer, as demonstrated by the recent approval of ABT-199 (Venclexta™) in relapsed or refractory Chronic Lymphocytic Leukemia with 17p deletion. Here, we describe a novel orally bioavailable BCL-2 selective and potent inhibitor called S55746 (also known as BCL201). S55746 occupies the hydrophobic groove of BCL-2. Its selectivity profile demonstrates no significant binding to MCL-1, BFL-1 (BCL2A1/A1) and poor affinity for BCL-XL. Accordingly, S55746 has no cytotoxic activity on BCL-XL-dependent cells, such as platelets. In a panel of hematological cell lines, S55746 induces hallmarks of apoptosis including externalization of phosphatidylserine, caspase-3 activation and PARP cleavage. Ex vivo, S55746 induces apoptosis in the low nanomolar range in primary Chronic Lymphocytic Leukemia and Mantle Cell Lymphoma patient samples. Finally, S55746 administered by oral route daily in mice demonstrated robust anti-tumor efficacy in two hematological xenograft models with no weight lost and no change in behavior. Taken together, these data demonstrate that S55746 is a novel, well-tolerated BH3-mimetic targeting selectively and potently the BCL-2 protein.

7.
Int J Mol Sci ; 19(1)2017 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-29295500

RESUMO

(1) Background: TP53 deficiency remains a major adverse event in Multiple Myeloma (MM) despite therapeutic progresses. As it is not possible to target TP53 deficiency with pharmacological agents, we explored the possibility of activating another p53 family member, p73, which has not been well studied in myeloma. (2) Methods: Using human myeloma cell lines (HMCLs) with normal or abnormal TP53 status, we assessed TP73 methylation and expression. (3) Results: Using microarray data, we reported that TP73 is weakly expressed in 47 HMCLs and mostly in TP53 wild type (TP53wt) HMCLs (p = 0.0029). Q-RT-PCR assays showed that TP73 was expressed in 57% of TP53wt HMCLs (4 out of 7) and 11% of TP53 abnormal (TP53abn) HMCLs (2 out of 18) (p = 0.0463). We showed that TP73 is silenced by methylation in TP53abn HMCLs and that decitabine increased its expression, which, however, remained insufficient for significant protein expression. Alkylating drugs increased expression of TP73 only in TP53wt HMCLs but failed to synergize with decitabine in TP53abn HMCLs. (4) Conclusions: Decitabine and melphalan does not appear as a promising combination for inducing p73 and bypassing p53 deficiency in myeloma cells.


Assuntos
Azacitidina/análogos & derivados , Melfalan/farmacologia , Mieloma Múltiplo/metabolismo , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/deficiência , Azacitidina/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Cisplatino/farmacologia , Ilhas de CpG/genética , Metilação de DNA/efeitos dos fármacos , Decitabina , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Blood ; 128(24): 2808-2818, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27697772

RESUMO

Mantle cell lymphoma (MCL) accumulates in lymphoid organs, but disseminates early on in extranodal tissues. Although proliferation remains located in lymphoid organs only, suggesting a major role of the tumor ecosystem, few studies have assessed MCL microenvironment. We therefore cocultured primary circulating MCL cells from 21 patients several weeks ex vivo with stromal or lymphoid-like (CD40L) cells to determine which interactions could support their proliferation. We showed that coculture with lymphoid-like cells, but not stromal cells, induced cell-cycle progression, which was amplified by MCL-specific cytokines (insulin-like growth factor-1, B-cell activating factor, interleukin-6, interleukin-10). Of interest, we showed that our model recapitulated the MCL in situ molecular signatures (ie, proliferation, NF-κB, and survival signatures). We further demonstrated that proliferating MCL harbored an imbalance in Bcl-2 family expression, leading to a consequent loss of mitochondrial priming. Of interest, this loss of priming was overcome by the type II anti-CD20 antibody obinutuzumab, which counteracted Bcl-xL induction through NF-κB inhibition. Finally, we showed that the mitochondrial priming directly correlated with the sensitivity toward venetoclax and alkylating drugs. By identifying the microenvironment as the major support for proliferation and drug resistance in MCL, our results highlight a selective approach to target the lymphoma niche.


Assuntos
Linfoma de Célula do Manto/patologia , Linfoma de Célula do Manto/terapia , Terapia de Alvo Molecular , Microambiente Tumoral , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/farmacologia , Antígenos CD20/imunologia , Ligante de CD40/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Tecido Linfoide/patologia , Masculino , Mesoderma/patologia , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proteína bcl-X/metabolismo
10.
Mol Cancer Ther ; 15(5): 1132-44, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26939706

RESUMO

BCL-2 family proteins dictate survival of human multiple myeloma cells, making them attractive drug targets. Indeed, multiple myeloma cells are sensitive to antagonists that selectively target prosurvival proteins such as BCL-2/BCL-XL (ABT-737 and ABT-263/navitoclax) or BCL-2 only (ABT-199/GDC-0199/venetoclax). Resistance to these three drugs is mediated by expression of MCL-1. However, given the selectivity profile of venetoclax it is unclear whether coexpression of BCL-XL also affects antitumor responses to venetoclax in multiple myeloma. In multiple myeloma cell lines (n = 21), BCL-2 is expressed but sensitivity to venetoclax correlated with high BCL-2 and low BCL-XL or MCL-1 expression. Multiple myeloma cells that coexpress BCL-2 and BCL-XL were resistant to venetoclax but sensitive to a BCL-XL-selective inhibitor (A-1155463). Multiple myeloma xenograft models that coexpressed BCL-XL or MCL-1 with BCL-2 were also resistant to venetoclax. Resistance to venetoclax was mitigated by cotreatment with bortezomib in xenografts that coexpressed BCL-2 and MCL-1 due to upregulation of NOXA, a proapoptotic factor that neutralizes MCL-1. In contrast, xenografts that expressed BCL-XL, MCL-1, and BCL-2 were more sensitive to the combination of bortezomib with a BCL-XL selective inhibitor (A-1331852) but not with venetoclax cotreatment when compared with monotherapies. IHC of multiple myeloma patient bone marrow biopsies and aspirates (n = 95) revealed high levels of BCL-2 and BCL-XL in 62% and 43% of evaluable samples, respectively, while 34% were characterized as BCL-2(High)/BCL-XL (Low) In addition to MCL-1, our data suggest that BCL-XL may also be a potential resistance factor to venetoclax monotherapy and in combination with bortezomib. Mol Cancer Ther; 15(5); 1132-44. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas/farmacologia , Proteína bcl-X/genética , Animais , Proteína 11 Semelhante a Bcl-2/metabolismo , Bortezomib/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Quimioterapia Combinada , Humanos , Imuno-Histoquímica , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Haematologica ; 101(3): e107-10, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26659917

Assuntos
Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fatores Imunológicos/farmacologia , Mieloma Múltiplo/terapia , Plasmócitos/efeitos dos fármacos , Talidomida/análogos & derivados , Animais , Caspase 3/genética , Caspase 3/imunologia , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/imunologia , Modelos Animais de Doenças , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/imunologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/imunologia , Lenalidomida , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Plasmócitos/imunologia , Plasmócitos/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/imunologia , Transdução de Sinais , Talidomida/farmacologia , Transativadores/genética , Transativadores/imunologia
12.
Oncotarget ; 6(11): 8750-9, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25797245

RESUMO

The aggressive biological behavior of mantle cell lymphoma (MCL) and its short response to current treatment highlight a great need for better rational therapy. Herein, we investigate the ability of ABT-199, the Bcl-2-selective BH3 mimetic, to kill MCL cells. Among MCL cell lines tested (n = 8), only three were sensitive (LD50 < 200 nM). In contrast, all primary MCL samples tested (n = 11) were highly sensitive to ABT-199 (LD50 < 10 nM). Mcl-1 and Bcl-xL both confer resistance to ABT-199-specific killing and BCL2/(BCLXL+MCL1) mRNA ratio is a strong predictor of sensitivity. By mimicking the microenvironment through CD40 stimulation, we show that ABT-199 sensitivity is impaired through activation of NF-kB pathway and Bcl-x(L) up-regulation. We further demonstrate that resistance is rapidly lost when MCL cells detach from CD40L-expressing fibroblasts. It has been reported that ibrutinib induces lymphocytosis in vivo holding off malignant cells from their protective microenvironment. We show here for two patients undergoing ibrutinib therapy that mobilized MCL cells are highly sensitive to ABT-199. These results provide evidence that in situ ABT-199 resistance can be overcome when MCL cells escape from the lymph nodes. Altogether, our data support the clinical application of ABT-199 therapy both as a single agent and in sequential combination with BTK inhibitors.


Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Antígenos CD40/fisiologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linfoma de Célula do Manto/tratamento farmacológico , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacologia , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Linfonodos/patologia , Linfoma de Célula do Manto/enzimologia , Linfoma de Célula do Manto/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/biossíntese , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , NF-kappa B/metabolismo , Proteínas de Neoplasias/fisiologia , Piperidinas , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , RNA Mensageiro/biossíntese , RNA Neoplásico/biossíntese , Microambiente Tumoral/efeitos dos fármacos , Proteína bcl-X/biossíntese , Proteína bcl-X/genética
14.
Cancer Biol Ther ; 16(1): 60-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25517601

RESUMO

Multiple myeloma (MM), a plasma cell malignancy, remains incurable despite the development of new therapies. Curcumin anti-tumor effects were previously characterized in multiple myeloma, however only few MM cell lines were included in these studies. Since myeloma is a heterogeneous disease it is important to address the impact of myeloma molecular heterogeneity in curcumin cell death induction. In the present study, a large panel of human myeloma cell lines (HMCLs) (n = 29), representing the main molecular MM subgroups, was screened for curcumin sensitivity. We observed that curcumin cell death induction was heterogeneous, of note 16 HMCLs were highly sensitive to curcumin (LD50 < 20.5 µM), 6 HMCLs exhibited intermediate LD50 values (20.5 µM ≤ LD50 < 32.2 µM) and only 7 HMCLs were weakly sensitive (35 < LD50 < 56 µM). Cell lines harboring the t(11;14) translocation were less sensitive (median LD50 32.9 µM) than non-t(11;14) (median LD50 17.9 µM), which included poor prognosis t(4;14) and t(14;16) cells. Interestingly, curcumin sensitivity was not dependent on TP53 status. For the first time we showed that primary myeloma cells were also sensitive, even those displaying del(17p), another poor prognosis factor. We also unravel the contribution of anti-apoptotic Bcl-2 family molecules in curcumin response. We found that down-regulation of Mcl-1, an essential MM survival factor, was associated with curcumin-induced cell death and its knockdown sensitized myeloma cells to curcumin, highlighting Mcl-1 as an important target for curcumin-induced apoptosis. Altogether, these results support clinical trials including curcumin in association with standard therapy.


Assuntos
Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Curcumina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Caspase 3/metabolismo , Morte Celular/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Plasmócitos/efeitos dos fármacos , Plasmócitos/metabolismo , Plasmócitos/patologia , Prognóstico
15.
Blood ; 124(10): 1626-36, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25006124

RESUMO

The aim of this study was to assess the efficiency of p53 reactivation and induction of massive apoptosis (PRIMA-1(Met)) in inducing myeloma cell death, using 27 human myeloma cell lines (HMCLs) and 23 primary samples. Measuring the lethal dose (LD50) of HMCLs revealed that HMCLs displayed heterogeneous sensitivity, with an LD50 ranging from 4 µM to more than 200 µM. The sensitivity of HMCLs did not correlate with myeloma genomic heterogeneity or TP53 status, and PRIMA-1(Met) did not induce or increase expression of the p53 target genes CDKN1A or TNFRSF10B/DR5. However, PRIMA-1(Met) increased expression of NOXA in a p53-independent manner, and NOXA silencing decreased PRIMA1(Met)-induced cell death. PRIMA-1(Met) depleted glutathione (GSH) content and induced reactive oxygen species production. The expression of GSH synthetase correlated with PRIMA-1(Met) LD50 values, and we showed that a GSH decrease mediated by GSH synthetase silencing or by and L-buthionine sulphoximine, an irreversible inhibitor of γ-glutamylcysteine synthetase, increased PRIMA-1(Met)-induced cell death and overcame PRIMA-1(Met) resistance. PRIMA-1(Met) (10 µM) induced cell death in 65% of primary cells independent of the presence of del17p; did not increase DR5 expression, arguing against an activation of p53 pathway; and synergized with L-buthionine sulphoximine in all samples. Finally, we showed in mouse TP53(neg) JJN3-xenograft model that PRIMA-1(Met) inhibited myeloma growth and synergized with L-buthionine sulphoximine in vivo.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Glutationa/metabolismo , Mieloma Múltiplo/patologia , Quinuclidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos/uso terapêutico , Morte Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Quinuclidinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
BMC Cancer ; 14: 437, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24927749

RESUMO

BACKGROUND: The aim of this study was to evaluate the efficacy of the p53-reactivating drugs RITA and nutlin3a in killing myeloma cells. METHODS: A large cohort of myeloma cell lines (n = 32) and primary cells (n = 21) was used for this study. This cohort contained cell lines with various TP53 statuses and primary cells with various incidences of deletion of chromosome 17. Apoptosis was evaluated using flow cytometry with Apo2.7 staining of the cell lines or via the loss of the myeloma-specific marker CD138 in primary cells. Apoptosis was further confirmed by the appearance of a subG1 peak and the activation of caspases 3 and 9. Activation of the p53 pathway was monitored using immunoblotting via the expression of the p53 target genes p21, Noxa, Bax and DR5. The involvement of p53 was further studied in 4 different p53-silenced cell lines. RESULTS: Both drugs induced the apoptosis of myeloma cells. The apoptosis that was induced by RITA was not related to the TP53 status of the cell lines or the del17p status of the primary samples (p = 0.52 and p = 0.80, respectively), and RITA did not commonly increase the expression level of p53 or p53 targets (Noxa, p21, Bax or DR5) in sensitive cells. Moreover, silencing of p53 in two TP53(mutated) cell lines failed to inhibit apoptosis that was induced by RITA, which confirmed that RITA-induced apoptosis in myeloma cells was p53 independent. In contrast, apoptosis induced by nutlin3a was directly linked to the TP53 status of the cell lines and primary samples (p < 0.001 and p = 0.034, respectively) and nutlin3a increased the level of p53 and p53 targets in a p53-dependent manner. Finally, we showed that a nutlin3a-induced DR5 increase (≥ 1.2-fold increase) was a specific and sensitive marker (p < 0.001) for a weak incidence of 17p deletion within the samples (≤ 19%). CONCLUSION: These data show that RITA, in contrast to nutlin3a, effectively induced apoptosis in a subset of MM cells independently of p53. The findings and could be of interest for patients with a 17p deletion, who are resistant to current therapies.


Assuntos
Antineoplásicos/farmacologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Concentração Inibidora 50 , Mitocôndrias/metabolismo , Transporte Proteico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ativação Transcricional/efeitos dos fármacos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
17.
Leuk Lymphoma ; 55(9): 2165-73, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24308434

RESUMO

Because the old alkylating drug bendamustine (BDM) is currently under evaluation in patients with multiple myeloma, we compared its efficacy to that of melphalan in 29 human myeloma cell lines (HMCLs). The concentrations of BDM and melphalan that killed 50% of cells (LD50) in HMCLs were linearly correlated (p < 0.001), and reactive oxygen (ROS) scavengers similarly inhibited cell death induced by both drugs. Sensitivity of HMCLs to both drugs was correlated to p53: the BDM and melphalan median LD50 values of TP53(wild-type) HMCLs were more than two-fold lower than those of TP53(abnormal) HMCLs (p < 0.001), and p53 silencing in TP53(wt) NCI-H929 cells inhibited BDM- and melphalan-induced cell death. Both drugs induced expression of p53 targets, p21, Puma and DR5, only in TP53(wt) HMCLs. In primary cells, both drugs induced an increase in DR5 expression in cells without del(17p). Finally, we demonstrated that the combined effect of BDM and melphalan was additive, and that BDM did not overcome melphalan resistance and vice versa.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Melfalan/farmacologia , Mieloma Múltiplo/metabolismo , Compostos de Mostarda Nitrogenada/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Cloridrato de Bendamustina , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Humanos , Mieloma Múltiplo/genética , Proteína Supressora de Tumor p53/genética
19.
Blood Cells Mol Dis ; 48(4): 247-53, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22341562

RESUMO

The purpose of this study was to identify the pathways associated with the ability of CD138(+) human myeloma cells to form colonies in a serum-free semi-solid human collagen-based assay. Only 26% (7 of 27) of human myeloma cell lines were able to spontaneously form colonies. This spontaneous clonogenic growth correlated with the expression of the NOTCH ligand JAG2 (p<0.001). Blocking JAG-NOTCH interactions with NOTCH-Fc chimeric molecules impaired self-colony formation, indicating a role for JAG-NOTCH pathway in colony formation. In two cell lines, silencing of JAG2 blocked both colony formation and in vivo tumor formation in immunocompromised mice. RT-PCR and flow cytometry analysis revealed that JAG2 is often expressed by CD138(+) primary cells. Our results indicate that spontaneous clonogenic growth of myeloma cells requires the expression of JAG2.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Mieloma Múltiplo/metabolismo , Receptores Notch/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Expressão Gênica , Inativação Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Jagged-2 , Ligantes , Proteínas de Membrana/genética , Camundongos , Camundongos SCID , Mieloma Múltiplo/genética , Transdução de Sinais , Sindecana-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA