Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Imaging ; 9(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38132683

RESUMO

The advancement of medical prognoses hinges on the delivery of timely and reliable assessments. Conventional methods of assessments and diagnosis, often reliant on human expertise, lead to inconsistencies due to professionals' subjectivity, knowledge, and experience. To address these problems head-on, we harnessed artificial intelligence's power to introduce a transformative solution. We leveraged convolutional neural networks to engineer our SCOLIONET architecture, which can accurately identify Cobb angle measurements. Empirical testing on our pipeline demonstrated a mean segmentation accuracy of 97.50% (Sorensen-Dice coefficient) and 96.30% (Intersection over Union), indicating the model's proficiency in outlining vertebrae. The level of quantification accuracy was attributed to the state-of-the-art design of the atrous spatial pyramid pooling to better segment images. We also compared physician's manual evaluations against our machine driven measurements to validate our approach's practicality and reliability further. The results were remarkable, with a p-value (t-test) of 0.1713 and an average acceptable deviation of 2.86 degrees, suggesting insignificant difference between the two methods. Our work holds the premise of enabling medical practitioners to expedite scoliosis examination swiftly and consistently in improving and advancing the quality of patient care.

2.
Cancer Chemother Pharmacol ; 92(6): 439-453, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37768333

RESUMO

Current genome-wide studies have indicated that a great number of long non-coding RNAs (lncRNAs) are transcribed from the human genome and appeared as crucial regulators in a variety of cellular processes. Many studies have displayed a significant function of lncRNAs in the regulation of autophagy. Autophagy is a macromolecular procedure in cells in which intracellular substrates and damaged organelles are broken down and recycled to relieve cell stress resulting from nutritional deprivation, irradiation, hypoxia, and cytotoxic agents. Autophagy can be a double-edged sword and play either a protective or a damaging role in cells depending on its activation status and other cellular situations, and its dysregulation is related to tumorigenesis in various solid tumors. Autophagy induced by various therapies has been shown as a unique mechanism of resistance to anti-cancer drugs. Growing evidence is showing the important role of lncRNAs in modulating drug resistance via the regulation of autophagy in a variety of cancers. The role of lncRNAs in drug resistance of cancers is controversial; they may promote or suppress drug resistance via either activation or inhibition of autophagy. Mechanisms by which lncRNAs regulate autophagy to affect drug resistance are different, mainly mediated by the negative regulation of micro RNAs. In this review, we summarize recent studies that investigated the role of lncRNAs/autophagy axis in drug resistance of different types of solid tumors.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Autofagia/genética , Resistência a Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA