Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurooncol ; 168(2): 317-332, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38630384

RESUMO

INTRODUCTION: Patients with pediatric low-grade gliomas (pLGGs), the most common primary brain tumors in children, can often benefit from MAPK inhibitor (MAPKi) treatment. However, rapid tumor regrowth, also referred to as rebound growth, may occur once treatment is stopped, constituting a significant clinical challenge. METHODS: Four patient-derived pediatric glioma models were investigated to model rebound growth in vitro based on viable cell counts in response to MAPKi treatment and withdrawal. A multi-omics dataset (RNA sequencing and LC-MS/MS based phospho-/proteomics) was generated to investigate possible rebound-driving mechanisms. Following in vitro validation, putative rebound-driving mechanisms were validated in vivo using the BT-40 orthotopic xenograft model. RESULTS: Of the tested models, only a BRAFV600E-driven model (BT-40, with additional CDKN2A/Bdel) showed rebound growth upon MAPKi withdrawal. Using this model, we identified a rapid reactivation of the MAPK pathway upon MAPKi withdrawal in vitro, also confirmed in vivo. Furthermore, transient overactivation of key MAPK molecules at transcriptional (e.g. FOS) and phosphorylation (e.g. pMEK) levels, was observed in vitro. Additionally, we detected increased expression and secretion of cytokines (CCL2, CX3CL1, CXCL10 and CCL7) upon MAPKi treatment, maintained during early withdrawal. While increased cytokine expression did not have tumor cell intrinsic effects, presence of these cytokines in conditioned media led to increased attraction of microglia cells in vitro. CONCLUSION: Taken together, these data indicate rapid MAPK reactivation upon MAPKi withdrawal as a tumor cell intrinsic rebound-driving mechanism. Furthermore, increased secretion of microglia-recruiting cytokines may play a role in treatment response and rebound growth upon withdrawal, warranting further evaluation.


Assuntos
Neoplasias Encefálicas , Citocinas , Glioma , Microglia , Mutação , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Microglia/metabolismo , Microglia/efeitos dos fármacos , Glioma/metabolismo , Glioma/tratamento farmacológico , Glioma/patologia , Glioma/genética , Citocinas/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Criança , Camundongos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
2.
Nat Commun ; 15(1): 269, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191550

RESUMO

Medulloblastomas with extensive nodularity are cerebellar tumors characterized by two distinct compartments and variable disease progression. The mechanisms governing the balance between proliferation and differentiation in MBEN remain poorly understood. Here, we employ a multi-modal single cell transcriptome analysis to dissect this process. In the internodular compartment, we identify proliferating cerebellar granular neuronal precursor-like malignant cells, along with stromal, vascular, and immune cells. In contrast, the nodular compartment comprises postmitotic, neuronally differentiated malignant cells. Both compartments are connected through an intermediate cell stage resembling actively migrating CGNPs. Notably, we also discover astrocytic-like malignant cells, found in proximity to migrating and differentiated cells at the transition zone between the two compartments. Our study sheds light on the spatial tissue organization and its link to the developmental trajectory, resulting in a more benign tumor phenotype. This integrative approach holds promise to explore intercompartmental interactions in other cancers with varying histology.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Meduloblastoma/genética , Diferenciação Celular , Neoplasias Cerebelares/genética , Progressão da Doença , Técnicas Histológicas
3.
Clin Cancer Res ; 30(14): 2974-2985, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295147

RESUMO

PURPOSE: Primary central nervous system (CNS) gliomas can be classified by characteristic genetic alterations. In addition to solid tissue obtained via surgery or biopsy, cell-free DNA (cfDNA) from cerebrospinal fluid (CSF) is an alternative source of material for genomic analyses. EXPERIMENTAL DESIGN: We performed targeted next-generation sequencing of CSF cfDNA in a representative cohort of 85 patients presenting at two neurooncological centers with suspicion of primary or recurrent glioma. Copy-number variation (CNV) profiles, single-nucleotide variants (SNV), and small insertions/deletions (indel) were combined into a molecular-guided tumor classification. Comparison with the solid tumor was performed for 38 cases with matching solid tissue available. RESULTS: Cases were stratified into four groups: glioblastoma (n = 32), other glioma (n = 19), nonmalignant (n = 17), and nondiagnostic (n = 17). We introduced a molecular-guided tumor classification, which enabled identification of tumor entities and/or cancer-specific alterations in 75.0% (n = 24) of glioblastoma and 52.6% (n = 10) of other glioma cases. The overlap between CSF and matching solid tissue was highest for CNVs (26%-48%) and SNVs at predefined gene loci (44%), followed by SNVs/indels identified via uninformed variant calling (8%-14%). A molecular-guided tumor classification was possible for 23.5% (n = 4) of nondiagnostic cases. CONCLUSIONS: We developed a targeted sequencing workflow for CSF cfDNA as well as a strategy for interpretation and reporting of sequencing results based on a molecular-guided tumor classification in glioma. See related commentary by Abdullah, p. 2860.


Assuntos
Biomarcadores Tumorais , Ácidos Nucleicos Livres , Variações do Número de Cópias de DNA , Glioma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Glioma/genética , Glioma/líquido cefalorraquidiano , Glioma/patologia , Glioma/diagnóstico , Feminino , Pessoa de Meia-Idade , Masculino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Idoso , Adulto , Biomarcadores Tumorais/líquido cefalorraquidiano , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/líquido cefalorraquidiano , Ácidos Nucleicos Livres/genética , Neoplasias do Sistema Nervoso Central/líquido cefalorraquidiano , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/patologia , Polimorfismo de Nucleotídeo Único , Adulto Jovem , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/líquido cefalorraquidiano , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA