Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Environ Virol ; 16(2): 200-215, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555559

RESUMO

Growing global concerns over water scarcity, worsened by climate change, drive wastewater reclamation efforts. Inadequately treated wastewater presents significant public health risks. Previous studies in South Africa (SA) have reported high norovirus levels in final effluent and sewage-polluted surface water, indicating pathogen removal inefficiency. However, the viability of these virions was not explored. This study assessed human norovirus viability in final effluent from wastewater treatment works (WWTWs) in Pretoria, SA. Between June 2018 and August 2020, 200 samples were collected from two WWTWs, including raw sewage and final effluent. Norovirus concentrations were determined using in-house RNA standards. Viability of noroviruses in final effluent was assessed using viability RT-qPCR (vPCR) with PMAxx™-Triton X-100. There was no significant difference in GI concentrations between raw sewage (p = 0.5663) and final effluent (p = 0.4035) samples at WWTW1 and WWTW2. WWTW1 had significantly higher GII concentrations in raw sewage (p < 0.001) compared to WWTW2. No clear seasonal pattern was observed in norovirus concentrations. At WWTW1, 50% (7/14) of GI- and 64.9% (24/37) of GII-positive final effluent samples had no quantifiable RNA after vPCR. At WWTW2, the majority (92.6%, 25/27) of GII-positive final effluent samples showed a 100% RNA reduction post vPCR. PMAxx™-Triton X-100 vPCR provides a more accurate reflection of discharge of potentially viable noroviruses in the environment than standard RT-qPCR. Despite significant reductions in potentially viable noroviruses after wastewater treatment, the levels of potentially viable viruses in final effluent are still of concern due to the high initial load and low infectious dose of noroviruses.


Assuntos
Norovirus , Esgotos , Águas Residuárias , Norovirus/genética , Norovirus/isolamento & purificação , Norovirus/crescimento & desenvolvimento , África do Sul , Águas Residuárias/virologia , Humanos , Esgotos/virologia , Purificação da Água/métodos , Viabilidade Microbiana , Eliminação de Resíduos Líquidos/métodos , Infecções por Caliciviridae/virologia , RNA Viral/genética , RNA Viral/análise
2.
Food Environ Virol ; 10(1): 16-28, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28779481

RESUMO

Norovirus (NoV) GII.4 is the predominant genotype associated with gastroenteritis pandemics and new strains emerge every 2-3 years. Between 2008 and 2011, environmental studies in South Africa (SA) reported NoVs in 63% of the sewage-polluted river water samples. The aim of this study was to assess whether wastewater samples could be used for routine surveillance of NoVs, including GII.4 variants. From April 2015 to March 2016, raw sewage and effluent water samples were collected monthly from five wastewater treatment plants in SA. A total of 108 samples were screened for NoV GI and GII using real-time RT-qPCR. Overall 72.2% (78/108) of samples tested positive for NoVs with 4.6% (5/108) GI, 31.5% (34/108) GII and 36.1% (39/108) GI + GII strains being detected. Norovirus concentrations ranged from 1.02 × 102 to 3.41 × 106 genome copies/litre for GI and 5.00 × 103 to 1.31 × 106 genome copies/litre for GII. Sixteen NoV genotypes (GI.2, GI.3, GI.4, GI.5, GI.6, GII.2, GII.3, GII.4, GII.7, GII.9, GII.10, GII.14, GII.16, GII.17, GII.20, and GII.21) were identified. Norovirus GII.2 and GII.17 co-dominated and the majority of GII.17 strains clustered with the novel Kawasaki 2014 variant. Sewage surveillance facilitated detection of Kawasaki 2014 in SA, which to date has not been detected with surveillance in children with gastroenteritis <5 years of age. Combined surveillance in the clinical setting and environment appears to be a valuable strategy to monitor emergence of NoV strains in countries that lack NoV outbreak surveillance.


Assuntos
Infecções por Caliciviridae/virologia , Monitoramento Ambiental/métodos , Genótipo , Norovirus/crescimento & desenvolvimento , Rios , Águas Residuárias/virologia , Surtos de Doenças , Gastroenterite/virologia , Humanos , Epidemiologia Molecular , Norovirus/genética , Reação em Cadeia da Polimerase em Tempo Real , Esgotos/virologia , África do Sul , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA