Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE J Biomed Health Inform ; 27(12): 5734-5744, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37751335

RESUMO

Chronic respiratory diseases affect millions and are leading causes of death in the US and worldwide. Pulmonary auscultation provides clinicians with critical respiratory health information through the study of Lung Sounds (LS) and the context of the breathing-phase and chest location in which they are measured. Existing auscultation technologies, however, do not enable the simultaneous measurement of this context, thereby potentially limiting computerized LS analysis. In this work, LS and Impedance Pneumography (IP) measurements were obtained from 10 healthy volunteers while performing normal and forced-expiratory (FE) breathing maneuvers using our wearable IP and respiratory sounds (WIRS) system. Simultaneous auscultation was performed with the Eko CORE stethoscope (EKO). The breathing-phase context was extracted from the IP signals and used to compute phase-by-phase (Inspiratory (I), expiratory (E), and their ratio (I:E)) and breath-by-breath acoustic features. Their individual and added value was then elucidated through machine learning analysis. We found that the phase-contextualized features effectively captured the underlying acoustic differences between deep and FE breaths, yielding a maximum F1 Score of 84.1 ±11.4% with the phase-by-phase features as the strongest contributors to this performance. Further, the individual phase-contextualized models outperformed the traditional breath-by-breath models in all cases. The validity of the results was demonstrated for the LS obtained with WIRS, EKO, and their combination. These results suggest that incorporating breathing-phase context may enhance computerized LS analysis. Hence, multimodal sensing systems that enable this, such as WIRS, have the potential to advance LS clinical utility beyond traditional manual auscultation and improve patient care.


Assuntos
Sons Respiratórios , Dispositivos Eletrônicos Vestíveis , Humanos , Estudos de Viabilidade , Impedância Elétrica , Respiração , Auscultação
2.
IEEE Trans Biomed Eng ; 70(12): 3513-3524, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37405890

RESUMO

OBJECTIVE: Muscle health and decreased muscle performance (fatigue) quantification has proven to be an invaluable tool for both athletic performance assessment and injury prevention. However, existing methods estimating muscle fatigue are infeasible for everyday use. Wearable technologies are feasible for everyday use and can enable discovery of digital biomarkers of muscle fatigue. Unfortunately, the current state-of-the-art wearable systems for muscle fatigue tracking suffer from either low specificity or poor usability. METHODS: We propose using dual-frequency bioimpedance analysis (DFBIA) to non-invasively assess intramuscular fluid dynamics and thereby muscle fatigue. A wearable DFBIA system was developed to measure leg muscle fatigue of 11 individuals during a 13-day protocol consisting of exercise and unsupervised at-home portions. RESULTS: We derived a digital biomarker of muscle fatigue, fatigue score, from the DFBIA signals that was able to estimate the percent reduction in muscle force during exercise with repeated-measures Pearson's r = 0.90 and mean absolute error (MAE) of 3.6%. This fatigue score also estimated delayed onset muscle soreness with repeated-measures Pearson's r = 0.83 and MAE = 0.83. Using at-home data, DFBIA was strongly associated with absolute muscle force of participants (n = 198, p < 0.001). CONCLUSION: These results demonstrate the utility of wearable DFBIA for non-invasively estimating muscle force and pain through the changes in intramuscular fluid dynamics. SIGNIFICANCE: The presented approach may inform development of future wearable systems for quantifying muscle health and provide a novel framework for athletic performance optimization and injury prevention.


Assuntos
Fadiga Muscular , Dispositivos Eletrônicos Vestíveis , Humanos , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Exercício Físico/fisiologia , Biomarcadores
3.
IEEE Trans Biomed Eng ; 70(9): 2679-2689, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37027282

RESUMO

OBJECTIVE: Musculoskeletal health monitoring is limited in everyday settings where patient symptoms can substantially change - delaying treatment and worsening patient outcomes. Wearable technologies aim to quantify musculoskeletal health outside clinical settings but sensor constraints limit usability. Wearable localized multi-frequency bioimpedance assessment (MFBIA) shows promise for tracking musculoskeletal health but relies on gel electrodes, hindering extended at-home use. Here, we address this need for usable technologies for at-home musculoskeletal health assessment by designing a wearable adhesive-free MFBIA system using textile electrodes in extended uncontrolled mid-activity settings. METHODS: An adhesive-free multimodal wearable leg MFBIA system was developed in-lab under realistic conditions (5 participants, 45 measurements). Mid-activity textile and gel electrode MFBIA was compared across multiple compound movements (10 participants). Accuracy in tracking long-term changes in leg MFBIA was assessed by correlating gel and textile MFBIA simultaneously recorded in uncontrolled settings (10 participants, 80+ measurement hours). RESULTS: Mid-activity MFBIA measurements with textile electrodes agreed highly with (ground truth) gel electrode measurements (average [Formula: see text], featuring <1-Ohm differences (0.618 ± 0.340 Ω) across all movements. Longitudinal MFBIA changes were successfully measured in extended at-home settings (repeated measures r = 0.84). Participant responses found the system to be comfortable and intuitive (8.3/10), and all participants were able to don and operate the system independently. CONCLUSION: This work demonstrates wearable textile electrodes can be a viable substitute for gel electrodes when monitoring leg MFBIA in dynamic, uncontrolled settings. SIGNIFICANCE: Adhesive-free MFBIA can improve healthcare by enabling robust wearable musculoskeletal health monitoring in at-home and everyday settings.


Assuntos
Adesivos , Dispositivos Eletrônicos Vestíveis , Humanos , Perna (Membro) , Eletrodos , Impedância Elétrica , Têxteis
4.
Artigo em Inglês | MEDLINE | ID: mdl-36085606

RESUMO

In recent years, wearable mid-activity electrical bioimpedance (EBI) sensing has been used to non-invasively track changes in edema and swelling levels within human joints. While the physiological origin of the changes in mid-activity EBI measurements have been demonstrated, EBI waveform patterns during activity have not been explored. In this work, we present a novel approach to extract waveform features from EBI measurements during gait to estimate the changes in vertical ground reaction forces (vGRF) corresponding to fatigue. Wearable EBI and vGRF data were measured from six healthy subjects during an asymmetric fatiguing protocol. For the exercised leg, the first peak of vGRF corresponding to the initial phase of simple support, decreased significantly and the loading rate increased significantly between the beginning and the end of the protocol. No significant change in these parameters were observed for the control leg. The first peak of vGRF and loading rate during the protocol (15 walking sessions) were correlated to the multi-frequency EBI features with mean Pearson's r=0.81 and r=0.777, respectively. The results of this proof-of-concept study demonstrate the feasibility of estimating biomechanical parameters during activity with wearable EBI. Clinical Relevance - The proposed wearable system and associated signal processing could enable convenient tracking of changes in vGRFs during daily living activities, allowing physiotherapists and doctors to remotely monitor the progress and adherence of their patients and thereby reducing the number of clinical visits.


Assuntos
Eletricidade , Dispositivos Eletrônicos Vestíveis , Fadiga , Marcha , Humanos , Extremidade Inferior , Caminhada
5.
IEEE Trans Biomed Eng ; 69(12): 3772-3783, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35604995

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA) is a chronic inflammatory syndrome that features painful and destructive joint disease. Aggressive disease-modifying treatment can result in reduced symptoms and protection from irreversible joint damage; however, assessment of treatment efficacy is currently based largely on subjective measures of patient and physician impressions. In this work, we address this compelling need to provide an accurate and quantitative capability for monitoring joint health in patients with RA. METHODS: Joint acoustic emissions (JAEs), electrical bioimpedance (EBI), and kinematics were measured noninvasively from 11 patients with RA over the course of three weeks using a custom multimodal sensing brace, resulting in 49 visits with JAE recordings and 43 with EBI recordings. Features derived from all sensing modalities were fed into a linear discriminant analysis (LDA) model to predict disease activity according to the validated disease activity index (the DAS28-ESR). Erythrocyte sedimentation rate (ESR) was predicted using ridge regression and classified into a high or low class using LDA. RESULTS: DAS28-ESR level was predicted with an area under the receiver operating characteristic curve (AUC) of 0.82. With JAEs alone, we were able to track intrasubject differences in the disease activity score as well as classify ESR level with an AUC of 0.93. The majority of patients reported both an interest and ability to use the brace at home for longitudinal monitoring. CONCLUSION: This work demonstrates the ability to detect RA disease activity using noninvasive sensing. SIGNIFICANCE: This system has the potential to improve RA disease activity monitoring by giving treating clinicians objective data that can be acquired independent of a face-to-face clinic visit.


Assuntos
Antirreumáticos , Artrite Reumatoide , Humanos , Antirreumáticos/uso terapêutico , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/terapia , Sedimentação Sanguínea , Curva ROC , Resultado do Tratamento , Índice de Gravidade de Doença
6.
Sensors (Basel) ; 22(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35161876

RESUMO

Heart failure (HF) exacerbations, characterized by pulmonary congestion and breathlessness, require frequent hospitalizations, often resulting in poor outcomes. Current methods for tracking lung fluid and respiratory distress are unable to produce continuous, holistic measures of cardiopulmonary health. We present a multimodal sensing system that captures bioimpedance spectroscopy (BIS), multi-channel lung sounds from four contact microphones, multi-frequency impedance pneumography (IP), temperature, and kinematics to track changes in cardiopulmonary status. We first validated the system on healthy subjects (n = 10) and then conducted a feasibility study on patients (n = 14) with HF in clinical settings. Three measurements were taken throughout the course of hospitalization, and parameters relevant to lung fluid status-the ratio of the resistances at 5 kHz to those at 150 kHz (K)-and respiratory timings (e.g., respiratory rate) were extracted. We found a statistically significant increase in K (p < 0.05) from admission to discharge and observed respiratory timings in physiologically plausible ranges. The IP-derived respiratory signals and lung sounds were sensitive enough to detect abnormal respiratory patterns (Cheyne-Stokes) and inspiratory crackles from patient recordings, respectively. We demonstrated that the proposed system is suitable for detecting changes in pulmonary fluid status and capturing high-quality respiratory signals and lung sounds in a clinical setting.


Assuntos
Insuficiência Cardíaca , Dispositivos Eletrônicos Vestíveis , Humanos , Pulmão , Taxa Respiratória , Sons Respiratórios/diagnóstico
7.
IEEE Trans Biomed Eng ; 69(6): 1909-1919, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34818186

RESUMO

OBJECTIVE: Evaluating convenient, wearable multi-frequency impedance pneumography (IP)-based respiratory monitoring in ambulatory persons with novel electrode positioning. METHODS: A wearable multi-frequency IP system was utilized to estimate tidal volume (TV) and respiratory timings in 14 healthy subjects. A 5.1 cm × 5.1 cm tetrapolar electrode array, affixed to the sternum, and a conventional thoracic electrode configuration were employed to measure the respective IP signals, patch and thoracic IP. Data collected during static postures-sitting and supine-and activities-walking and stair-stepping-were evaluated against a simultaneously-obtained spirometer (SP) volume signal. RESULTS: Across all measurements, estimated TV obtained from the patch and thoracic IP maintained a Pearson correlation coefficient (r) of 0.93 ± 0.05 and 0.95 ± 0.05 to the ground truth TV, respectively, with an associated root-mean-square error (RMSE) of 0.177 L and 0.129 L, respectively. Average respiration rates (RRs) were extracted from 30-second segments with mean-absolute-percentage errors (MAPEs) of 0.93% and 0.74% for patch and thoracic IP, respectively. Likewise, average inspiratory and expiratory timings were identified with MAPEs less than 6% and 4.5% for patch and thoracic IP, respectively. CONCLUSION: We demonstrated that patch IP performs comparably to traditional, cumbersome IP configurations. We also present for the first time, to the best of our knowledge, that IP can robustly estimate breath-by-breath TV and respiratory timings during ambulation. SIGNIFICANCE: This work represents a notable step towards pervasive wearable ambulatory respiratory monitoring via the fusion of a compact chest-worn form factor and multi-frequency IP that can be readily adapted for holistic cardiopulmonary monitoring.


Assuntos
Taxa Respiratória , Dispositivos Eletrônicos Vestíveis , Impedância Elétrica , Humanos , Monitorização Ambulatorial , Volume de Ventilação Pulmonar
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7364-7368, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892799

RESUMO

Developments in wearable technologies created opportunities for non-invasive joint health assessment while subjects perform daily activities during rehabilitation and recovery. However, existing state-of-art solutions still require a health professional or a researcher to set up the device, and most of them are not convenient for at-home use. In this paper, we demonstrate the latest version of the multimodal knee brace that our lab previously developed. This knee brace utilizes four sensing modalities: joint acoustic emissions (JAEs), electrical bioimpedance (EBI), activity and temperature. We designed custom printed-circuit boards and developed firmware to acquire high quality data. For the brace material, we used a commercial knee brace and modified it for the comfort of patients as well as to secure all electrical connections. We updated the electronics to enable rapid EBI measurements for mid-activity tracking. The performance of the multimodal knee brace was evaluated through a proof-of-concept human subjects study (n=9) with 2 days of measurement and 3 sessions per day. We obtained consistent EBI data with less than 1 Ω variance in measured impedance within six full frequency sweeps (each sweep is from 5 kHz to 100 kHz with 256 frequency steps) from each subject. Then, we asked subjects to perform 10 unloaded knee flexion/extensions, while we measured continuous 5 kHz and 100 kHz EBI at every 100 ms. The ratio of the range of reactance (ΔX5kHz/ΔX100kHz) was found to be less than 1 for all subjects for all cycles, which indicates lack of swelling and thereby a healthy joint. We also conducted intra and inter session reliability analysis for JAE recordings through intraclass correlation analysis (ICC), and obtained excellent ICC values (>0.75), suggesting reliable performance on JAE measurements. The presented knee brace could readily be used at home in future work for knee health monitoring of patients undergoing rehabilitation or recovery.


Assuntos
Articulação do Joelho , Osteoartrite do Joelho , Fenômenos Biomecânicos , Braquetes , Humanos , Reprodutibilidade dos Testes
9.
IEEE Trans Biomed Eng ; 68(4): 1341-1350, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32997618

RESUMO

OBJECTIVE: To present a robust methodology for evaluating ankle health during ambulation using a wearable device. Methods: We developed a novel data capture system that leverages changes within the ankle during ambulation for real-time tracking of bioimpedance. The novel analysis compares the range of reactance at 5 kHz to the range of reactance at 100 kHz; which removes the technique's previous reliance on a known baseline. To aid in interpretation of the measurements, we developed a quantitative simulation model based on a literature review of the effects on joint bioimpedance of variations in edematous fluid volume, muscle fiber tears, and blood flow changes. Results: The results of the simulation predicted a significant difference in the ratio of the range of the reactance from 5 kHz to 100 kHz between the healthy and injured ankles. These results were validated in 15 subjects - with 11 healthy ankles and 7 injured ankles measured. The injured subjects had lateral ankle sprains 2-4 weeks prior to the measurement. The analysis technique differentiated between the healthy and the injured population (p<<0.01), and a correlation (R = 0.8) with a static protocol previously validated for its sensitivity to edema. Conclusion: The technology presented can detect variations in ankle edema and structural integrity of ankles, and thus could provide valuable feedback to clinicians and patients during the rehabilitation of an ankle injury. Significance: This technology could lead to better-informed decision making regarding a patient's readiness to return to activity and / or tailoring rehabilitation activities to an individual's changing needs.


Assuntos
Traumatismos do Tornozelo , Entorses e Distensões , Tornozelo , Articulação do Tornozelo , Humanos , Caminhada
10.
IEEE Trans Biomed Eng ; 67(4): 1019-1029, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31295102

RESUMO

OBJECTIVE: We present a robust methodology for tracking ankle edema longitudinally based on bioimpedance spectroscopy (BIS). METHODS: We designed a miniaturized BIS measurement system and employed a novel calibration method that enables accurate, high-resolution measurements with substantially lower power consumption than conventional approaches. Using this state-of-the-art wearable BIS measurement system, we developed a differential measurement technique for robust assessment of ankle edema. This technique addresses many of the major challenges in longitudinal BIS-based edema assessment, including day-to-day variability in electrode placement, positional/postural variability, and intersubject variability. RESULTS: We first evaluated the hardware in bench-top testing, and determined the error of the bioimpedance measurements to be 0.4 Ω for the real components and 0.54 Ω for the imaginary components with a resolution of 0.2 Ω. We then validated the hardware and differential measurement technique in: 1) an ex vivo, fresh-frozen, cadaveric limb model, and 2) a cohort of 11 human subjects for proof of concept (eight healthy controls and five subjects with recently acquired acute unilateral ankle injury). CONCLUSION: The hardware design, with novel calibration methodology, and differential measurement technique can potentially enable long-term quantification of ankle edema throughout the course of rehabilitation following acute ankle injuries. SIGNIFICANCE: This could lead to better-informed decision making regarding readiness to return to activities and/or tailoring of rehabilitation activities to an individual's changing needs.


Assuntos
Tornozelo , Dispositivos Eletrônicos Vestíveis , Edema/diagnóstico , Impedância Elétrica , Humanos , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA