Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35890079

RESUMO

Lathyrane diterpenoids are one of the primary types of secondary metabolites present in the genus Euphorbia and one of the largest groups of diterpenes. They are characterized by having a highly oxygenated tricyclic system of 5, 11 and 3 members. These natural products and some synthetic derivatives have shown numerous interesting biological activities with clinical potential against various diseases, such as cytotoxic activity against cancer cell lines, multi-drug resistance reversal, antiviral properties, anti-inflammatory activity and their capability to induce proliferation or differentiation into neurons of neural progenitor cells. The structure of the lathyrane skeleton could be considered privileged because its framework is able to direct functional groups in a well-defined space. The favorable arrangement of these makes interaction possible with more than one target. This review aims to highlight the evidence of lathyranes as privileged structures in medicinal chemistry. Chemical structures of bioactive compounds, the evaluation of biological properties of natural and semisynthetic derivatives, and the exploration of the mechanisms of action as well as target identification and some aspects of their targeted delivery are discussed.

2.
Org Biomol Chem ; 10(16): 3315-20, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22411102

RESUMO

Here we describe the biotransformation of clovane derivatives by filamentary fungi Pestalotiopsis palustris and Penicillium minioluteum, and the application of the latter to the synthesis and determination of the absolute configuration of rumphellclovane A (2). Methoxyclovanol (1), a growth inhibitor of the phytopathogen Botrytis cinerea, is metabolised by P. palustris to yield rumphellclovane A (2), a natural compound recently isolated from the gorgonian coral Rumphella antipathies, two new compounds, (1R,2S,5S,8R,9S,10R)-2-methoxyclovane-9,10-diol (5) and (1S,2S,5S,7R,8R,9R)-2-methoxyclovane-7,9-diol (6), hydroxylated in positions not easily accessed by classic synthetic chemistry, and clovanodiols 3 and 4. P. minioluteum is able to selectively transform methoxyclovanol (1) into clovanodiols 3 and 4 and, in turn, lactone 8, the putative intermediate in the above mentioned synthesis of rumphellclovane A (2), into compound 2 via a domino process. The ability of P. minioluteum to carry out the cleavage of ethers on clovane derivatives is also evaluated.


Assuntos
Fungos Mitospóricos/metabolismo , Terpenos/metabolismo , Biotransformação , Fungos Mitospóricos/química , Estrutura Molecular , Penicillium/química , Penicillium/metabolismo , Estereoisomerismo , Terpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA