Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38743428

RESUMO

INTRODUCTION: This review summarizes our current understanding of the respiratory microbiome in COPD and Bronchiectasis. We explore the interplay between microbial communities, host immune responses, disease pathology and treatment outcomes. AREAS COVERED: We detail the dynamics of the airway microbiome, its influence in chronic respiratory diseases, and analytical challenges. Relevant articles from PubMed and Medline searches between Jan 2010 and March 2024 were retrieved and summarized. The review examines clinical correlations of the microbiome in COPD and bronchiectasis, assessing how current therapies impact upon it. The potential of emerging immunotherapies, anti-inflammatories and antimicrobial strategies are discussed, with focus on the pivotal role of commensal taxa in maintaining respiratory health and the promising avenue of microbiome remodeling for disease management. EXPERT OPINION: Given the heterogeneity in microbiome composition and its pivotal role in disease development and progression, a shift toward microbiome-directed therapeutics is appealing. This transition, from traditional 'pathogen-centric' diagnostic and treatment modalities to those acknowledging the microbiome, can be enabled by evolving cross-disciplinary platforms which have the potential to accelerate microbiome-based interventions into routine clinical practice. Bridging the gap between comprehensive microbiome analysis and clinical application, however, remains challenging, necessitating continued innovation in research, diagnostics, trials and therapeutic development pipelines.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38315959

RESUMO

RATIONALE: Progressive lung function loss is recognized in COPD; however, no study concurrently evaluates how accelerated lung function decline relates to mucus properties and the microbiome in COPD. OBJECTIVE: Longitudinal assessment of mucus and microbiome changes accompanying accelerated lung function decline in COPD patients. METHODS: Prospective, longitudinal assessment of the London COPD cohort exhibiting the greatest FEV1 decline (n=30; "accelerated decline"; 156 mL/year FEV1 loss) and with no FEV1 decline (n=28; "non-decline"; 49 mL/year FEV1 gain) over time. Lung microbiomes from "paired" sputum (total 116 specimens) were assessed by shotgun metagenomics and corresponding mucus profiles evaluated for biochemical and biophysical properties. RESULTS: Biochemical and biophysical mucus properties are significantly altered in the accelerated decline group. Unsupervised principal component analysis showed clear separation, with mucus biochemistry associated with accelerated decline, while biophysical mucus characteristics contributed to inter-individual variability. When mucus and microbes are considered together, an accelerated decline mucus-microbiome association emerges, characterized by increased mucin (MUC5AC and MUC5B) concentration and the presence of Achromobacter and Klebsiella. As COPD progresses, mucus-microbiome shifts occur, initially characterized by low mucin concentration and transition from viscous to elastic dominance accompanied by the commensals Veillonella, Gemella, Rothia and Prevotella (GOLD A and B) before transition to increased mucus viscosity, mucins, and DNA concentration along with the emergence of pathogenic microorganisms including Haemophilus, Moraxella and Pseudomonas (GOLD E). CONCLUSION: Mucus-microbiome associations evolve over time with accelerated lung function decline, symptom progression and exacerbations affording fresh therapeutic opportunities for early intervention. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

4.
Artigo em Inglês | MEDLINE | ID: mdl-38271608

RESUMO

INTRODUCTION: Application of whole-genome shotgun metagenomics to the airway microbiome in bronchiectasis highlights a diverse pool of antimicrobial resistance genes: the 'resistome', the clinical significance of which remains unclear. METHODS: Individuals with bronchiectasis were prospectively recruited into cross-sectional and longitudinal cohorts (n=280) including the international multicentre cross-sectional Cohort of Asian and Matched European Bronchiectasis 2 study (CAMEB 2; n=251) and two independent cohorts, one describing patients experiencing acute exacerbation and a further cohort of patients undergoing P. aeruginosa eradication treatment. Sputum was subjected to metagenomic sequencing and the bronchiectasis resistome evaluated in association with clinical outcomes and underlying host microbiomes. RESULTS: The bronchiectasis resistome features a unique resistance gene profile and elevated counts of aminoglycoside, bicyclomycin, phenicol, triclosan and multi-drug resistance genes. Longitudinally, it exhibits within-patient stability over time and during exacerbations despite between-patient heterogeneity. Proportional differences in baseline resistome profiles including increased macrolide and multi-drug resistance genes associate with shorter intervals to next exacerbation, while distinct resistome archetypes associate with frequent exacerbations, poorer lung function, geographic origin, and the host microbiome. Unsupervised analysis of resistome profiles identified two clinically relevant 'resistotypes' RT1 and RT2, the latter characterized by poor clinical outcomes, increased multi-drug resistance and P. aeruginosa. Successful targeted eradication in P. aeruginosa-colonized individuals mediated reversion from RT2 to RT1, a more clinically favourable resistome profile demonstrating reduced resistance gene diversity. CONCLUSION: The bronchiectasis resistome associates with clinical outcomes, geographic origin, and the underlying host microbiome. Bronchiectasis 'resistotypes' link to clinical disease and are modifiable through targeted antimicrobial therapy. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

5.
Am J Respir Crit Care Med ; 208(5): 631-632, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348125
6.
Am J Respir Crit Care Med ; 207(7): 908-920, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288294

RESUMO

Rationale: Emerging data support the existence of a microbial "gut-lung" axis that remains unexplored in bronchiectasis. Methods: Prospective and concurrent sampling of gut (stool) and lung (sputum) was performed in a cohort of n = 57 individuals with bronchiectasis and subjected to bacteriome (16S rRNA) and mycobiome (18S Internal Transcribed Spacer) sequencing (total, 228 microbiomes). Shotgun metagenomics was performed in a subset (n = 15; 30 microbiomes). Data from gut and lung compartments were integrated by weighted similarity network fusion, clustered, and subjected to co-occurrence analysis to evaluate gut-lung networks. Murine experiments were undertaken to validate specific Pseudomonas-driven gut-lung interactions. Results: Microbial communities in stable bronchiectasis demonstrate a significant gut-lung interaction. Multibiome integration followed by unsupervised clustering reveals two patient clusters, differing by gut-lung interactions and with contrasting clinical phenotypes. A high gut-lung interaction cluster, characterized by lung Pseudomonas, gut Bacteroides, and gut Saccharomyces, is associated with increased exacerbations and greater radiological and overall bronchiectasis severity, whereas the low gut-lung interaction cluster demonstrates an overrepresentation of lung commensals, including Prevotella, Fusobacterium, and Porphyromonas with gut Candida. The lung Pseudomonas-gut Bacteroides relationship, observed in the high gut-lung interaction bronchiectasis cluster, was validated in a murine model of lung Pseudomonas aeruginosa infection. This interaction was abrogated after antibiotic (imipenem) pretreatment in mice confirming the relevance and therapeutic potential of targeting the gut microbiome to influence the gut-lung axis. Metagenomics in a subset of individuals with bronchiectasis corroborated our findings from targeted analyses. Conclusions: A dysregulated gut-lung axis, driven by lung Pseudomonas, associates with poorer clinical outcomes in bronchiectasis.


Assuntos
Bronquiectasia , Microbiota , Animais , Camundongos , Estudos Prospectivos , RNA Ribossômico 16S/genética , Pulmão/microbiologia , Bronquiectasia/tratamento farmacológico
7.
Cell Host Microbe ; 30(9): 1311-1327.e8, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36108613

RESUMO

Neisseria species are frequently identified in the bronchiectasis microbiome, but they are regarded as respiratory commensals. Using a combination of human cohorts, next-generation sequencing, systems biology, and animal models, we show that bronchiectasis bacteriomes defined by the presence of Neisseria spp. associate with poor clinical outcomes, including exacerbations. Neisseria subflava cultivated from bronchiectasis patients promotes the loss of epithelial integrity and inflammation in primary epithelial cells. In vivo animal models of Neisseria subflava infection and metabolipidome analysis highlight immunoinflammatory functional gene clusters and provide evidence for pulmonary inflammation. The murine metabolipidomic data were validated with human Neisseria-dominant bronchiectasis samples and compared with disease in which Pseudomonas-, an established bronchiectasis pathogen, is dominant. Metagenomic surveillance of Neisseria across various respiratory disorders reveals broader importance, and the assessment of the home environment in bronchiectasis implies potential environmental sources of exposure. Thus, we identify Neisseria species as pathobionts in bronchiectasis, allowing for improved risk stratification in this high-risk group.


Assuntos
Bronquiectasia , Microbiota , Animais , Bronquiectasia/epidemiologia , Humanos , Metagenoma , Camundongos , Neisseria/genética
8.
Clin Chest Med ; 43(1): 23-34, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236558

RESUMO

The microbiology in bronchiectasis has been historically defined by culture-based analysis of the airway microbiome and to date has largely focused on the detection and eradication of specific bacterial pathogens. Although central to our current understanding of disease, microbial culture alone masks the holistic complexity of the microbiome and does not account for potential microbial interactions that define specific clinical phenotypes such as frequent exacerbators. Advances in next-generation sequencing including their analytical technologies can further complement and build upon our current understanding of the microbiology and microbiome in bronchiectasis providing improved patient stratification with prognostic significance.


Assuntos
Bronquiectasia , Microbiota , Humanos , Fenótipo
9.
Chest ; 161(1): 40-53, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364870

RESUMO

BACKGROUND: Allergic bronchopulmonary aspergillosis (ABPA) is associated with frequent exacerbations and poor outcomes in chronic respiratory disease, but remains underdiagnosed. The role of fungal sensitization in bronchiectasis-COPD overlap (BCO) is unknown. RESEARCH QUESTION: What is the occurrence and clinical relevance of Aspergillus sensitization and ABPA in BCO when compared with individuals with COPD or bronchiectasis without overlap? STUDY DESIGN: Prospective, observational, cross-sectional study. METHODS: We prospectively recruited 280 patients during periods of clinical stability with bronchiectasis (n = 183), COPD (n = 50), and BCO (n = 47) from six hospitals across three countries (Singapore, Malaysia, and Scotland). We assessed sensitization responses (as specific IgE) to a panel of recombinant Aspergillus fumigatus allergens and the occurrence of ABPA in relationship to clinical outcomes. RESULTS: Individuals with BCO show an increased frequency and clinical severity of ABPA compared with those with COPD and bronchiectasis without overlap. BCO-associated ABPA is associated with more severe disease, higher exacerbation rates, and lower lung function when compared with ABPA occurring in the absence of overlap. BCO with a severe bronchiectasis severity index (BSI; > 9) is associated significantly with the occurrence of ABPA that is unrelated to underlying COPD severity. CONCLUSIONS: BCO demonstrates a high frequency of ABPA that is associated with a severe BSI (> 9) and poor clinical outcomes. Clinicians should maintain a high index of suspicion for the potential development of ABPA in patients with BCO with high BSI.


Assuntos
Aspergilose Broncopulmonar Alérgica/epidemiologia , Bronquiectasia/epidemiologia , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Idoso , Alérgenos/imunologia , Aspergilose Broncopulmonar Alérgica/imunologia , Aspergillus fumigatus/imunologia , Bronquiectasia/complicações , Bronquiectasia/fisiopatologia , Estudos Transversais , Feminino , Humanos , Imunoglobulina E/imunologia , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Escócia/epidemiologia , Singapura/epidemiologia
10.
Curr Opin Pulm Med ; 28(2): 121-133, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34839338

RESUMO

PURPOSE OF REVIEW: Next-generation sequencing (NGS) has deepened our understanding of the respiratory microbiome in health and disease. The number of microbiome studies employing sputum as an airway surrogate has continued to increase over the past decade to include multiple large multicentre and longitudinal studies of the microbiome in chronic obstructive pulmonary disease (COPD). In this review, we summarize the recent advances to our understanding of the bacteriome, virome and mycobiome in COPD. RECENT FINDINGS: Diverse microbiome profiles are reported in COPD. The neutrophilic Haemophilus-predominant bacteriome remains a prominent COPD phenotype, relatively stable over time and during exacerbations. Studies of the virome remain limited but reveal a potential involvement of viruses and bacteriophages particularly during COPD exacerbations and advancing disease severity. Mycobiome signatures, even in stable COPD are associated with poorer clinical outcomes including mortality. SUMMARY: The sputum microbiome in COPD is being increasingly recognized for its clinical relevance, even in the stable state. Future studies integrating microbial kingdoms holistically (i.e. bacterial, viral and fungal) will provide deeper insight into its functionality including the relevance of microbial interactions and effect of treatment on microbiome-associated clinical outcomes.


Assuntos
Microbiota , Doença Pulmonar Obstrutiva Crônica , Humanos , Estudos Longitudinais , Índice de Gravidade de Doença , Escarro
11.
Comput Struct Biotechnol J ; 19: 6272-6281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900137

RESUMO

Traditionally, human microbiology has been strongly built on the laboratory focused culture of microbes isolated from human specimens in patients with acute or chronic infection. These approaches primarily view human disease through the lens of a single species and its relevant clinical setting however such approaches fail to account for the surrounding environment and wide microbial diversity that exists in vivo. Given the emergence of next generation sequencing technologies and advancing bioinformatic pipelines, researchers now have unprecedented capabilities to characterise the human microbiome in terms of its taxonomy, function, antibiotic resistance and even bacteriophages. Despite this, an analysis of microbial communities has largely been restricted to ordination, ecological measures, and discriminant taxa analysis. This is predominantly due to a lack of suitable computational tools to facilitate microbiome analytics. In this review, we first evaluate the key concerns related to the inherent structure of microbiome datasets which include its compositionality and batch effects. We describe the available and emerging analytical techniques including integrative analysis, machine learning, microbial association networks, topological data analysis (TDA) and mathematical modelling. We also present how these methods may translate to clinical settings including tools for implementation. Mathematical based analytics for microbiome analysis represents a promising avenue for clinical translation across a range of acute and chronic disease states.

12.
Emerg Infect Dis ; 27(9): 2294-2300, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34423760

RESUMO

Genomic analysis of a diverse collection of Clostridioides difficile ribotype 078 isolates from Ireland and 9 countries in Europe provided evidence for complex regional and international patterns of dissemination that are not restricted to humans. These isolates are associated with C. difficile colonization and clinical illness in humans and pigs.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Animais , Clostridioides , Clostridioides difficile/genética , Infecções por Clostridium/epidemiologia , Europa (Continente)/epidemiologia , Humanos , Ribotipagem , Suínos
13.
Semin Respir Crit Care Med ; 42(4): 556-566, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34261180

RESUMO

Bronchiectasis is a chronic condition of global relevance resulting in permanent and irreversible structural airway damage. Bacterial infection in bronchiectasis is well studied; however, recent molecular studies identify fungi as important pathogens, either independently or in association with bacteria. Aspergillus species are established fungal pathogens in cystic fibrosis and their role is now increasingly being recognized in noncystic fibrosis bronchiectasis. While the healthy airway is constantly exposed to ubiquitously present Aspergillus conidia in the environment, anatomically damaged airways appear more prone to colonization and subsequent infection by this fungal group. Aspergilli possess diverse immunopathological mechanistic capabilities and when coupled with innate immune defects in a susceptible host, such as that observed in bronchiectasis, it may promote a range of clinical manifestations including sensitization, allergic bronchopulmonary aspergillosis, Aspergillus bronchitis, and/or invasive aspergillosis. How such clinical states influence "endophenotypes" in bronchiectasis is therefore of importance, as each Aspergillus-associated disease state has overlapping features with bronchiectasis itself, and can evolve, depending on underlying host immunity from one type into another. Concurrent Aspergillus infection complicates the clinical course and exacerbations in bronchiectasis and therefore dedicated research to better understand the Aspergillus-host interaction in the bronchiectasis airway is now warranted.


Assuntos
Aspergilose Broncopulmonar Alérgica , Aspergilose , Bronquiectasia , Aspergilose Pulmonar , Aspergillus , Endofenótipos , Humanos
15.
Nat Med ; 27(4): 688-699, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33820995

RESUMO

Bronchiectasis, a progressive chronic airway disease, is characterized by microbial colonization and infection. We present an approach to the multi-biome that integrates bacterial, viral and fungal communities in bronchiectasis through weighted similarity network fusion ( https://integrative-microbiomics.ntu.edu.sg ). Patients at greatest risk of exacerbation have less complex microbial co-occurrence networks, reduced diversity and a higher degree of antagonistic interactions in their airway microbiome. Furthermore, longitudinal interactome dynamics reveals microbial antagonism during exacerbation, which resolves following treatment in an otherwise stable multi-biome. Assessment of the Pseudomonas interactome shows that interaction networks, rather than abundance alone, are associated with exacerbation risk, and that incorporation of microbial interaction data improves clinical prediction models. Shotgun metagenomic sequencing of an independent cohort validated the multi-biome interactions detected in targeted analysis and confirmed the association with exacerbation. Integrative microbiomics captures microbial interactions to determine exacerbation risk, which cannot be appreciated by the study of a single microbial group. Antibiotic strategies probably target the interaction networks rather than individual microbes, providing a fresh approach to the understanding of respiratory infection.


Assuntos
Bronquiectasia/microbiologia , Microbiota , Bronquiectasia/virologia , Progressão da Doença , Humanos , Metagenômica , Interações Microbianas/genética , Microbiota/genética , Filogenia
16.
Mycopathologia ; 186(5): 623-638, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33709335

RESUMO

Chronic obstructive pulmonary disease (COPD) and bronchiectasis represent chronic airway diseases associated with significant morbidity and mortality. Bacteria and viruses are commonly implicated in acute exacerbations; however the significance of fungi in these airways remains poorly defined. While COPD and bronchiectasis remain recognized risk factors for the occurrence of Aspergillus-associated disease including chronic and invasive aspergillosis, underlying mechanisms that lead to the progression from colonization to invasive disease remain uncertain. Nonetheless, advances in molecular technologies have improved our detection, identification and understanding of resident fungi characterizing these airways. Mycobiome sequencing has revealed the complex varied and myriad profile of airway fungi in COPD and bronchiectasis, including their association with disease presentation, progression, and mortality. In this review, we outline the emerging evidence for the clinical importance of fungi in COPD and bronchiectasis, available diagnostic modalities, mycobiome sequencing approaches and association with clinical outcomes.


Assuntos
Bronquiectasia , Micoses , Aspergilose Pulmonar , Doença Pulmonar Obstrutiva Crônica , Aspergillus , Bronquiectasia/complicações , Humanos , Doença Pulmonar Obstrutiva Crônica/complicações
19.
Eur Respir J ; 57(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32972986

RESUMO

INTRODUCTION: The chronic obstructive pulmonary disease (COPD) bacteriome associates with disease severity, exacerbations and mortality. While COPD patients are susceptible to fungal sensitisation, the role of the fungal mycobiome remains uncertain. METHODS: We report the largest multicentre evaluation of the COPD airway mycobiome to date, including participants from Asia (Singapore and Malaysia) and the UK (Scotland) when stable (n=337) and during exacerbations (n=66) as well as nondiseased (healthy) controls (n=47). Longitudinal mycobiome analysis was performed during and following COPD exacerbations (n=34), and examined in terms of exacerbation frequency, 2-year mortality and occurrence of serum specific IgE (sIgE) against selected fungi. RESULTS: A distinct mycobiome profile is observed in COPD compared with controls as evidenced by increased α-diversity (Shannon index; p<0.001). Significant airway mycobiome differences, including greater interfungal interaction (by co-occurrence), characterise very frequent COPD exacerbators (three or more exacerbations per year) (permutational multivariate ANOVA; adjusted p<0.001). Longitudinal analyses during exacerbations and following treatment with antibiotics and corticosteroids did not reveal any significant change in airway mycobiome profile. Unsupervised clustering resulted in two clinically distinct COPD groups: one with increased symptoms (COPD Assessment Test score) and Saccharomyces dominance, and another with very frequent exacerbations and higher mortality characterised by Aspergillus, Curvularia and Penicillium with a concomitant increase in serum sIgE levels against the same fungi. During acute exacerbations of COPD, lower fungal diversity associates with higher 2-year mortality. CONCLUSION: The airway mycobiome in COPD is characterised by specific fungal genera associated with exacerbations and increased mortality.


Assuntos
Micobioma , Doença Pulmonar Obstrutiva Crônica , Ásia , Progressão da Doença , Humanos , Malásia , Escócia , Singapura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA