RESUMO
BACKGROUND: Immunity to SARS-CoV-2 vaccination and infection differs considerably among individuals. We investigate the critical pathways that influence vaccine-induced cross-variant serological immunity among individuals at high-risk of COVID-19 complications. METHODS: Neutralizing antibodies to the wild-type SARS-CoV-2 virus and its variants (Beta, Gamma, Delta and Omicron) were analyzed in patients with autoimmune diseases, chronic comorbidities (multimorbidity), and healthy controls. Antibody levels were assessed at baseline and at different intervals up to 12 months following primary and booster vaccination with either BNT162b2 or mRNA-1273. Immunity induced by vaccination with and without infection (hybrid immunity) was compared with that of unvaccinated individuals with recent SARS-CoV-2 infection. Plasma cytokines were analyzed to investigate variations in antibody production following vaccination. RESULTS: Patients with autoimmune diseases (n = 137) produced lesser antibodies to the wild-type SARS-CoV-2 virus and its variants compared with those in the multimorbidity (n = 153) and healthy groups (n = 229); antibody levels were significantly lower in patients with neuromyelitis optica and those on prednisolone, mycophenolate or rituximab treatment. Multivariate logistic regression analysis identified neuromyelitis optica (odds ratio 8.20, 95% CI 1.68-39.9) and mycophenolate (13.69, 3.78-49.5) as significant predictors of a poorer antibody response to vaccination (i.e, neutralizing antibody <40%). Infected participants exhibited antibody levels that were 28.7% higher (95% CI 24.7-32.7) compared to non-infected participants six months after receiving a booster vaccination. Individuals infected during the Delta outbreak generated cross-protective neutralizing antibodies against the Omicron variant in quantities comparable to those observed after infection with the Omicron variant itself. In contrast, unvaccinated individuals recently infected with the wild-type (n = 2390) consistently displayed lower levels of neutralizing antibodies against both the wild-type virus and other variants. Pathway analyses suggested an inverse relationship between baseline T cell subsets and antibody production following vaccination. CONCLUSION: Hybrid immunity confers a robust protection against COVID-19 among immunocompromised individuals.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Hospedeiro Imunocomprometido , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/prevenção & controle , Masculino , Feminino , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Anticorpos Antivirais/sangue , Hospedeiro Imunocomprometido/imunologia , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Idoso , Vacina BNT162/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Vacinação , Proteção Cruzada/imunologia , Imunização Secundária , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Doenças Autoimunes/imunologia , Citocinas/sangueRESUMO
Current coronavirus disease 2019 vaccines face limitations including waning immunity, immune escape by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, limited cellular response, and poor mucosal immunity. We engineered a Clec9A-receptor binding domain (RBD) antibody construct that delivers the SARS-CoV-2 RBD to conventional type 1 dendritic cells. Compared with non-targeting approaches, single dose immunization in mice with Clec9A-RBD induced far higher RBD-specific antibody titers that were sustained for up to 21 months after vaccination. Uniquely, increasing neutralizing and antibody-dependent cytotoxicity activities across the sarbecovirus family was observed, suggesting antibody affinity maturation over time. Consistently and remarkably, RBD-specific follicular T helper cells and germinal center B cells persisted up to 12 months after immunization. Furthermore, Clec9A-RBD immunization induced a durable mono- and poly-functional T-helper 1-biased cellular response that was strongly cross-reactive against SARS-CoV-2 variants of concern, including Omicron subvariants, and with a robust CD8+ T cell signature. Uniquely, Clec9A-RBD single-shot systemic immunization effectively primed RBD-specific cellular and humoral immunity in lung and resulted in significant protection against homologous SARS-CoV-2 challenge as evidenced by limited body weight loss and approximately 2 log10 decrease in lung viral loads compared with non-immunized controls. Therefore, Clec9A-RBD immunization has the potential to trigger robust and sustained, systemic and mucosal protective immunity against rapidly evolving SARS-CoV2 variants.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Células Dendríticas , Imunidade nas Mucosas , Lectinas Tipo C , SARS-CoV-2 , Animais , Camundongos , Células Dendríticas/imunologia , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/imunologia , Humanos , Feminino , Glicoproteína da Espícula de Coronavírus/imunologia , Receptores Mitogênicos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Receptores ImunológicosRESUMO
Cross-linking mass spectrometry (XL-MS) provides low-resolution structural information to model protein structures. Here, we present a protocol to identify cross-links of purified antibody binding to purified human leukocyte antigen (HLA). We describe steps for using a discovery-based XL-MS approach followed by a targeted XL-MS approach. We then detail procedures for using the identified cross-links with other structural data for molecular docking of the antibody to HLA. This protocol has applications for modeling the interacting structure of purified antibody to antigen. For complete details on the use and execution of this protocol, please refer to Ser et al.1.
Assuntos
Anticorpos , Proteínas , Humanos , Simulação de Acoplamento Molecular , Proteínas/metabolismo , Espectrometria de Massas/métodos , Antígenos HLARESUMO
BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to severe disease with increased morbidity and mortality among certain risk groups. The presence of autoantibodies against type I interferons (aIFN-Abs) is one mechanism that contributes to severe coronavirus disease 2019 (COVID-19). METHODS: This study aimed to investigate the presence of aIFN-Abs in relation to the soluble proteome, circulating immune cell numbers, and cellular phenotypes, as well as development of adaptive immunity. RESULTS: aIFN-Abs were more prevalent in critical compared to severe COVID-19 but largely absent in the other viral and bacterial infections studied here. The antibody and T-cell response to SARS-CoV-2 remained largely unaffected by the presence aIFN-Abs. Similarly, the inflammatory response in COVID-19 was comparable in individuals with and without aIFN-Abs. Instead, presence of aIFN-Abs had an impact on cellular immune system composition and skewing of cellular immune pathways. CONCLUSIONS: Our data suggest that aIFN-Abs do not significantly influence development of adaptive immunity but covary with alterations in immune cell numbers.
Assuntos
Autoanticorpos , COVID-19 , Interferon Tipo I , SARS-CoV-2 , Humanos , COVID-19/imunologia , Interferon Tipo I/imunologia , Autoanticorpos/sangue , Autoanticorpos/imunologia , SARS-CoV-2/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Imunidade Celular , Adulto , Idoso , Imunidade Adaptativa/imunologia , Linfócitos T/imunologia , Índice de Gravidade de DoençaRESUMO
Although the two-dose mRNA vaccination regime provides protection against SARS-CoV-2, older adults have been shown to exhibit poorer vaccination responses. In addition, the role of vaccine-induced T-cell responses is not well characterised. We aim to assess the impact of age on immune responses after two doses of the BNT162b2 mRNA vaccine, focussing on antigen-specific T-cells. A prospective 3-month study was conducted on 15 young (median age 31 years, interquartile range (IQR) 25-35 years) and 14 older adults (median age 72 years, IQR 70-73 years). We assessed functional, neutralising antibody responses against SARS-CoV-2 variants using ACE-2 inhibition assays, and changes in B and T-cell subsets by high-dimensional flow cytometry. Antigen-specific T-cell responses were also quantified by intracellular cytokine staining and flow cytometry. Older adults had attenuated T-helper (Th) response to vaccination, which was associated with weaker antibody responses and decreased SARS-CoV-2 neutralisation. Antigen-specific interferon-γ (IFNγ)-secreting CD4+ T-cells to wild-type and Omicron antigens increased in young adults, which was strongly positively correlated with their neutralising antibody responses. Conversely, this relationship was negative in older adults. Hence, older adults' relative IFNγ-secreting CD4+ T cell deficiency might explain their poorer COVID-19 vaccination responses. Further exploration into the aetiology is needed and would be integral in developing novel vaccination strategies and improving infection outcomes in older adults.
Assuntos
COVID-19 , Interferon gama , Adulto Jovem , Humanos , Idoso , Adulto , Linfócitos T CD4-Positivos , Vacinas contra COVID-19 , Vacina BNT162 , Estudos Prospectivos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Anticorpos Neutralizantes , Anticorpos AntiviraisRESUMO
The advent of SARS-CoV-2 variants with defined mutations that augment pathogenicity and/or increase immune evasiveness continues to stimulate global efforts to improve vaccine formulation and efficacy. The extraordinary advantages of lipid nanoparticles (LNPs), including versatile design, scalability, and reproducibility, make them ideal candidates for developing next-generation mRNA vaccines against circulating SARS-CoV-2 variants. Here, we assess the efficacy of LNP-encapsulated mRNA booster vaccines encoding the spike protein of SARS-CoV-2 for variants of concern (Delta, Omicron) and using a predecessor (YN2016C isolated from bats) strain spike protein to elicit durable cross-protective neutralizing antibody responses. The mRNA-LNP vaccines have desirable physicochemical characteristics, such as small size (~78 nm), low polydispersity index (<0.13), and high encapsulation efficiency (>90%). We employ in vivo bioluminescence imaging to illustrate the capacity of our LNPs to induce robust mRNA expression in secondary lymphoid organs. In a BALB/c mouse model, a three-dose subcutaneous immunization of mRNA-LNPs vaccines achieved remarkably high levels of cross-neutralization against the Omicron B1.1.529 and BA.2 variants for extended periods of time (28 weeks) with good safety profiles for all constructs when used in a booster regime, including the YN2016C bat virus sequences. These findings have important implications for the design of mRNA-LNP vaccines that aim to trigger durable cross-protective immunity against the current and newly emerging variants.
RESUMO
OBJECTIVES: Platelets and low-density neutrophils (LDNs) are major players in the immunopathogenesis of SLE. Despite evidence showing the importance of platelet-neutrophil complexes (PNCs) in inflammation, little is known about the relationship between LDNs and platelets in SLE. We sought to characterize the role of LDNs and Toll-like receptor 7 (TLR7) in clinical disease. METHODS: Flow cytometry was used to immunophenotype LDNs from SLE patients and controls. The association of LDNs with organ damage was investigated in a cohort of 290 SLE patients. TLR7 mRNA expression was assessed in LDNs and high-density neutrophils (HDNs) using publicly available mRNA sequencing datasets and our own cohort using RT-PCR. The role of TLR7 in platelet binding was evaluated in platelet-HDN mixing studies using TLR7-deficient mice and Klinefelter syndrome patients. RESULTS: SLE patients with active disease have more LDNs, which are heterogeneous and more immature in patients with evidence of kidney dysfunction. LDNs are platelet bound, in contrast to HDNs. LDNs settle in the peripheral blood mononuclear cell (PBMC) layer due to the increased buoyancy and neutrophil degranulation from platelet binding. Mixing studies demonstrated that this PNC formation was dependent on platelet-TLR7 and that the association results in increased NETosis. The neutrophil:platelet ratio is a useful clinical correlate for LDNs, and a higher NPR is associated with past and current flares of LN. CONCLUSIONS: LDNs sediment in the upper PBMC fraction due to PNC formation, which is dependent on the expression of TLR7 in platelets. Collectively, our results reveal a novel TLR7-dependent crosstalk between platelets and neutrophils that may be an important therapeutic opportunity for LN.
Assuntos
Nefrite Lúpica , Neutrófilos , Animais , Humanos , Camundongos , Leucócitos Mononucleares , Nefrite Lúpica/patologia , Neutrófilos/metabolismo , RNA Mensageiro/metabolismo , Receptor 7 Toll-Like/genéticaRESUMO
The scale and duration of neutralizing antibody responses targeting SARS-CoV-2 viral variants represents a critically important serological parameter that predicts protective immunity for COVID-19. In this study, we describe the development and employment of a new functional assay that measures neutralizing antibodies for SARS-CoV-2 and present longitudinal data illustrating the impact of age, sex and comorbidities on the kinetics and strength of vaccine-induced antibody responses for key variants in an Asian volunteer cohort. We also present an accurate quantitation of serological responses for SARS-CoV-2 that exploits a unique set of in-house, recombinant human monoclonal antibodies targeting the viral Spike and nucleocapsid proteins and demonstrate a reduction in neutralizing antibody titres across all groups 6 months post-vaccination. We also observe a marked reduction in the serological binding activity and neutralizing responses targeting recently newly emerged Omicron variants including XBB 1.5 and highlight a significant increase in cross-protective neutralizing antibody responses following a third dose (boost) of vaccine. These data illustrate how key virological factors such as immune escape mutations combined with host demographic factors such as age and sex of the vaccinated individual influence the strength and duration of cross-protective serological immunity for COVID-19.
Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , Anticorpos Amplamente Neutralizantes , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Emprego , Vacinação , Anticorpos AntiviraisRESUMO
Despite being a convenient clinical substrate for biomonitoring, saliva's widespread utilization has not yet been realized. The non-Newtonian, heterogenous, and highly viscous nature of saliva complicate the development of automated fluid handling processes that are vital for accurate diagnoses. Furthermore, conventional saliva processing methods are resource and/or time intensive precluding certain testing capabilities, with these challenges aggravated during a pandemic. The conventional approaches may also alter analyte structure, reducing application opportunities in point-of-care diagnostics. To overcome these challenges, we introduce the SHEAR saliva collection device that mechanically processes saliva, in a rapid and resource-efficient way. We demonstrate the device's impact on reducing saliva's viscosity, improving sample's uniformity, and increasing diagnostic performance of a COVID-19 rapid antigen test. Additionally, a formal user experience study revealed generally positive comments. SHEAR saliva collection device may support realization of the saliva's potential, particularly in large-scale and/or resource-limited settings for global and community diagnostics.
RESUMO
The changing landscape of SARS-CoV-2 Spike protein is linked to the emergence of variants, immune-escape and reduced efficacy of the existing repertoire of anti-viral antibodies. The functional activity of neutralizing antibodies is linked to their quaternary changes occurring as a result of antibody-Spike trimer interactions. Here, we reveal the conformational dynamics and allosteric perturbations linked to binding of novel human antibodies and the viral Spike protein. We identified epitope hotspots, and associated changes in Spike dynamics that distinguish weak, moderate and strong neutralizing antibodies. We show the impact of mutations in Wuhan-Hu-1, Delta, and Omicron variants on differences in the antibody-induced conformational changes in Spike and illustrate how these render certain antibodies ineffective. Antibodies with similar binding affinities may induce destabilizing or stabilizing allosteric effects on Spike, with implications for neutralization efficacy. Our results provide mechanistic insights into the functional modes and synergistic behavior of human antibodies against COVID-19 and may assist in designing effective antiviral strategies.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Testes de NeutralizaçãoRESUMO
Through extensive multisystem phenotyping, the central aim of Project PICMAN is to correlate metabolic flexibility to measures of cardiometabolic health, including myocardial diastolic dysfunction, coronary and cerebral atherosclerosis, body fat distribution and severity of non-alcoholic fatty liver disease. This cohort will form the basis of larger interventional trials targeting metabolic inflexibility in the prevention of cardiovascular disease. Participants aged 21-72 years with no prior manifest atherosclerotic cardiovascular disease (ASCVD) are being recruited from a preventive cardiology clinic and an existing cohort of non-alcoholic fatty liver disease (NAFLD) in an academic medical centre. A total of 120 patients will be recruited in the pilot phase of this study and followed up for 5 years. Those with 10-year ASCVD risk ≥ 5% as per the QRISK3 calculator are eligible. Those with established diabetes mellitus are excluded. Participants recruited undergo a detailed assessment of health behaviours and physical measurements. Participants also undergo a series of multimodality clinical phenotyping comprising cardiac tests, vascular assessments, metabolic tests, liver and neurovascular testing. Blood samples are also being collected and banked for plasma biomarkers, 'multi-omics analyses' and for generation of induced pluripotent stem cells (iPSC). Extensive evidence points to metabolic dysregulation as an early precursor of cardiovascular disease, particularly in Asia. We hypothesise that quantifiable metabolic inflexibility may be representative of an individual in his/her silent, but high-risk progression towards insulin resistance, diabetes and cardiovascular disease. The platform for interdisciplinary cardiovascular-metabolic-neurovascular diseases (PICMAN) is a pilot, prospective, multi-ethnic cohort study.
Assuntos
Aterosclerose , Doenças Cardiovasculares , Sistema Cardiovascular , Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Feminino , Estudos de Coortes , Estudos Prospectivos , Fatores de RiscoRESUMO
COVID-19 vaccination has significantly impacted the global pandemic by reducing the severity of infection, lowering rates of hospitalization, and reducing morbidity/mortality in healthy individuals. However, the degree of vaccine-induced protection afforded to renal transplant recipients who receive forms of maintenance immunosuppression remains poorly defined. This is particularly important when we factor in the emergence of SARS-CoV-2 variants of concern (VOCs) that have defined mutations that reduce the effectiveness of Ab responses targeting the Spike Ags from the ancestral Wuhan-Hu-1 variants employed in the most widely used vaccine formats. In this study, we describe a qualitative, longitudinal analysis of neutralizing Ab responses against multiple SARS-CoV-2 VOCs in 129 renal transplant recipients who have received three doses of the Pfizer-BioNTech COVID-19 vaccine (BNT162b2). Our results reveal a qualitative and quantitative reduction in the vaccine-induced serological response in transplant recipients versus healthy controls where only 51.9% (67 of 129) made a measurable vaccine-induced IgG response and 41.1% (53 of 129) exhibited a significant neutralizing Ab titer (based on a pseudovirus neutralization test value >50%). Analysis on the VOCs revealed strongest binding toward the wild-type Wuhan-Hu-1 and Delta variants but none with both of the Omicron variants tested (BA1 and BA2). Moreover, older transplant recipients and those who are on mycophenolic acid as part of their maintenance therapy exhibited a profound reduction in all of the analyzed vaccine-induced immune correlates. These data have important implications for how we monitor and manage transplant patients in the future as COVID-19 becomes endemic in our populations.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacina BNT162 , Transplantados , COVID-19/prevenção & controle , SARS-CoV-2RESUMO
Alloantibody recognition of donor human leukocyte antigen (HLA) is associated with poor clinical transplantation outcomes. However, the molecular and structural basis for the alloantibody-HLA interaction is not well understood. Here, we used a hybrid structural modeling approach on a previously studied alloantibody-HLA interacting pair with inputs from ab initio, in silico, and in vitro data. Highly reproducible cross-linking mass spectrometry data were obtained with both discovery- and targeted mass spectrometry-based approaches approaches. The cross-link information was then used together with predicted antibody Fv structure, predicted antibody paratope, and in silico-predicted interacting surface to model the antibody-HLA interaction. This hybrid structural modeling approach closely recapitulates the key interacting residues from a previously solved crystal structure of an alloantibody-HLA-A∗11:01 pair. These results suggest that a predictive-based hybrid structural modeling approach supplemented with cross-linking mass spectrometry data can provide functionally relevant structural models to understand the structural basis of antibody-HLA mismatch in transplantation.
Assuntos
Antígenos HLA , Antígenos de Histocompatibilidade , Humanos , Antígenos de Histocompatibilidade Classe II , Isoanticorpos , Região Variável de Imunoglobulina , Espectrometria de MassasRESUMO
Suboptimal responses to a primary vaccination course have been reported in the elderly, but there is little information regarding the impact of age on responses to booster third doses. Here, we show that individuals 70 years or older (median age 73, range 70-75) who received a primary two-dose schedule with AZD1222 and booster third dose with mRNA vaccine achieve significantly lower neutralizing antibody responses against SARS-CoV-2 spike pseudotyped virus compared with those younger than 70 (median age 66, range 54-69) at 1 month post booster. Impaired neutralization potency and breadth post third dose in the elderly is associated with circulating "atypical" spike-specific B cells expressing CD11c and FCRL5. However, when considering individuals who received three doses of mRNA vaccine, we did not observe differences in neutralization or enrichment in atypical B cells. This work highlights the finding that AdV and mRNA COVID-19 vaccine formats differentially instruct the memory B cell response.
Assuntos
COVID-19 , Idoso , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , SARS-CoV-2 , VacinaçãoRESUMO
Tuberculosis (TB) is an airborne disease caused by Mycobacterium tuberculosis (Mtb). Whilst a functional role for humoral immunity in Mtb protection remains poorly defined, previous studies have suggested that antibodies can contribute towards host defense. Thus, identifying the critical components in the antibody repertoires from immune, chronically exposed, healthy individuals represents an approach for identifying new determinants for natural protection. In this study, we performed a thorough analysis of the IgG/IgA memory B cell repertoire from occupationally exposed, immune volunteers. We detail the identification and selection of a human monoclonal antibody that exhibits protective activity in vivo and show that it targets a virulence factor LpqH. Intriguingly, protection in both human ex vivo and murine challenge experiments was isotype dependent, with most robust protection being mediated via IgG2 and IgA. These data have important implications for our understanding of natural mucosal immunity for Mtb and highlight a new target for future vaccine development.
RESUMO
Signal transduction induced by chimeric antigen receptors (CARs) is generally believed to rely on the activity of the SRC family kinase (SFK) LCK, as is the case with T cell receptor (TCR) signaling. Here, we show that CAR signaling occurs in the absence of LCK. This LCK-independent signaling requires the related SFK FYN and a CD28 intracellular domain within the CAR. LCK-deficient CAR-T cells are strongly signaled through CAR and have better in vivo efficacy with reduced exhaustion phenotype and enhanced induction of memory and proliferation. These distinctions can be attributed to the fact that FYN signaling tends to promote proliferation and survival, whereas LCK signaling promotes strong signaling that tends to lead to exhaustion. This non-canonical signaling of CAR-T cells provides insight into the initiation of both TCR and CAR signaling and has important clinical implications for improvement of CAR function.
Assuntos
Receptores de Antígenos Quiméricos , Proteínas Proto-Oncogênicas/metabolismo , Antígenos CD28 , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Linfócitos T , Receptores de Antígenos de Linfócitos T , Proteínas Proto-Oncogênicas c-fyn , Transdução de SinaisRESUMO
Waning antibody levels against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the emergence of variants of concern highlight the need for booster vaccinations. This is particularly important for the elderly population, who are at a higher risk of developing severe coronavirus disease 2019 (COVID-19) disease. While studies have shown increased antibody responses following booster vaccination, understanding the changes in T and B cell compartments induced by a third vaccine dose remains limited. We analyzed the humoral and cellular responses in subjects who received either a homologous messenger RNA(mRNA) booster vaccine (BNT162b2 + BNT162b2 + BNT162b2; ''BBB") or a heterologous mRNA booster vaccine (BNT162b2 + BNT162b2 + mRNA-1273; ''BBM") at Day 0 (prebooster), Day 7, and Day 28 (postbooster). Compared with BBB, elderly individuals (≥60 years old) who received the BBM vaccination regimen display higher levels of neutralizing antibodies against the Wuhan and Delta strains along with a higher boost in immunoglobulin G memory B cells, particularly against the Omicron variant. Circulating T helper type 1(Th1), Th2, Th17, and T follicular helper responses were also increased in elderly individuals given the BBM regimen. While mRNA vaccines increase antibody, T cell, and B cell responses against SARS-CoV-2 1 month after receiving the third dose booster, the efficacy of the booster vaccine strategies may vary depending on age group and regimen combination.
Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Humanos , Pessoa de Meia-Idade , SARS-CoV-2/genética , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas de mRNA , Anticorpos Neutralizantes , Anticorpos Antivirais , VacinaçãoRESUMO
Accumulating evidence indicates a potential role for bacterial lipopolysaccharide (LPS) in the overactivation of the immune response during SARS-CoV-2 infection. LPS is recognized by Toll-like receptor 4, mediating proinflammatory effects. We previously reported that LPS directly interacts with SARS-CoV-2 spike (S) protein and enhances proinflammatory activities. Using native gel electrophoresis and hydrogen-deuterium exchange mass spectrometry, we showed that LPS binds to multiple hydrophobic pockets spanning both the S1 and S2 subunits of the S protein. Molecular simulations validated by a microscale thermophoresis binding assay revealed that LPS binds to the S2 pocket with a lower affinity compared to S1, suggesting a role as an intermediate in LPS transfer. Congruently, nuclear factor-kappa B (NF-κB) activation in monocytic THP-1 cells is strongly boosted by S2. Using NF-κB reporter mice followed by bioimaging, a boosting effect was observed for both S1 and S2, with the former potentially facilitated by proteolysis. The Omicron S variant binds to LPS, but with reduced affinity and LPS boosting in vitro and in vivo. Taken together, the data provide a molecular mechanism by which S protein augments LPS-mediated hyperinflammation.