Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 304, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982461

RESUMO

BACKGROUND: The primary objective of this cross-sectional study, conducted in Québec and Bristish Columbia (Canada) between February 2021 and January 2022, was to measure the prevalence of viral RNA in oronasal and rectal swabs and serum antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) amongst cats living in households with at least one confirmed human case. Secondary objectives included a description of potential risk factors for the presence of SARS-CoV-2 antibodies and an estimation of the association between the presence of viral RNA in swabs as well as SARS-CoV-2 antibodies and clinical signs. Oronasal and rectal swabs and sera were collected from 55 cats from 40 households at most 15 days after a human case confirmation, and at up to two follow-up visits. A RT-qPCR assay and an ELISA were used to detect SARS-CoV-2 RNA in swabs and serum SARS-CoV-2 IgG antibodies, respectively. Prevalence and 95% Bayesian credibility intervals (BCI) were calculated, and associations were evaluated using prevalence ratio and 95% BCI obtained from Bayesian mixed log-binomial models. RESULTS: Nine (0.16; 95% BCI = 0.08-0.28) and 38 (0.69; 95% BCI = 0.56-0.80) cats had at least one positive RT-qPCR and at least one positive serological test result, respectively. No risk factor was associated with the prevalence of SARS-CoV-2 serum antibodies. The prevalence of clinical signs suggestive of COVID-19 in cats, mainly sneezing, was 2.12 (95% BCI = 1.03-3.98) times higher amongst cats with detectable viral RNA compared to those without. CONCLUSIONS: We showed that cats develop antibodies to SARS-CoV-2 when exposed to recent human cases, but detection of viral RNA on swabs is rare, even when sampling occurs soon after confirmation of a human case. Moreover, cats with detectable levels of virus showed clinical signs more often than cats without signs, which can be useful for the management of such cases.


Assuntos
Anticorpos Antivirais , COVID-19 , Doenças do Gato , RNA Viral , SARS-CoV-2 , Gatos , Animais , SARS-CoV-2/imunologia , Doenças do Gato/virologia , Doenças do Gato/epidemiologia , Anticorpos Antivirais/sangue , COVID-19/veterinária , COVID-19/epidemiologia , COVID-19/diagnóstico , COVID-19/virologia , Estudos Transversais , Humanos , Feminino , Masculino , Prevalência
2.
Vet Sci ; 11(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39058008

RESUMO

The female reproductive tract microbiota is a complex community of microorganisms that might be crucial in maintaining a healthy reproductive environment. Imbalances in the bacterial community (dysbiosis) and the reduction of beneficial organisms and pathogen proliferation are associated with disease. Endometritis is a common cause of fertility problems in mares, and it is still challenging to diagnose and treat based on routine culture results of certain microorganisms. Although high-throughput sequencing studies provide helpful information regarding the composition of the reproductive tract microbiota in mares, there are still challenges in defining a "normal" microbiota. The primary objective of this literature review is to summarize the current knowledge regarding the microbiota present in the reproductive tract of mares, including the vagina, cervix, and uterus. The second objective is to describe the relevant factors that can impact the reproductive microbiota of mares, including the estrous cycle stage, the type of species (genera) investigated, season, and geographic location. The rationality of identifying the normal microbiota in the reproductive tract of a mare will likely aid in understanding the impact of the microbiota on the host's reproductive health and contribute to the treatment and prevention of equine sub and infertility issues.

3.
Front Microbiol ; 15: 1367493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694809

RESUMO

Purpose: Pet guardians are increasingly seeking vegan dog foods. However, research on the impact of these diets on gastrointestinal (GI) physiology and health is limited. In humans, vegan diets modify the GI microbiota, increasing beneficial digestive microorganisms. This study aimed to examine the canine fecal microbiota in response to a vegan diet compared to an animal-based diet. Methods: Sixty-one client-owned healthy adult dogs completed a randomized, double-blinded longitudinal study. Dogs were randomly assigned into two groups that were fed either a commercial extruded animal-based diet (MEAT, n = 30) or an experimental extruded vegan diet (PLANT, n = 31) for 12 weeks. Fecal collections occurred at the start of the experimental period and after 3 months of exclusively feeding either diet. Bacterial DNA was extracted from the feces, and the V4 region of the 16S rRNA gene was amplified using PCR and sequenced on Illumina MiSeq. Beta-diversity was measured using Jaccard and Bray-Curtis distances, and the PERMANOVA was used to assess for differences in fecal microbiota within and between groups. Alpha-diversity indices for richness, evenness, and diversity, as well as relative abundance, were calculated and compared between groups. Results: Beta-diversity differences occurred between diet groups at exit time-point with differences on Bray-Curtis distances at the family and genus levels (p = 0.007 and p = 0.001, respectively), and for the Jaccard distance at the family and genus level (p = 0.006 and p = 0.011, respectively). Significant differences in alpha-diversity occurred when comparing the PLANT to the MEAT group at the exit time-point with the PLANT group having a lower evenness (p = 0.012), but no significant differences in richness (p = 0.188), or diversity (p = 0.06). At exit-timepoint, compared to the MEAT group, the relative abundance of Fusobacterium, Bacteroides, and Campylobacter was lower in the PLANT group. The relative abundance of Fusobacterium decreased over time in the PLANT group, while no change was observed in the MEAT group. Conclusion: These results indicate that vegan diets may change the canine gut microbiota. Future studies are warranted to confirm our results and determine long-term effects of vegan diets on the canine gut microbiome.

4.
Vet Sci ; 11(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38535842

RESUMO

Neonatal calf diarrhea is the leading cause of neonatal morbidity and mortality globally. The changes associated with the gastrointestinal microbiota in neonatal calves experiencing diarrhea and its etiology are not fully understood or completely defined in the literature. Several studies have demonstrated that the fecal microbiota of calves that experience diarrhea substantially deviates from that of healthy age-matched calves. However, one key question remains: whether the changes observed in the bacterial communities (also known as dysbiosis) are a predisposing factor for, or the consequence of, gastrointestinal inflammation caused by the pathogens associated with calf diarrhea. The first objective of this literature review is to present the current information regarding the changes in the fecal microbiota of diarrheic calves and the impact of the pathogens associated with diarrhea on fecal microbiota. Modulation of the gastrointestinal microbiota using pre- and probiotics, colostrum feeding, and fecal microbiota transplantation (FMT) has been used to treat and prevent gastrointestinal diseases in humans and dogs. Although information regarding the use of probiotics for the prevention of diarrhea is available in cattle, little information is available regarding the use of these strategies for treating calf diarrhea and the use of prebiotics or FMT to prevent diarrhea. The second objective of this literature review is to summarize the current knowledge regarding the impact of prebiotics, probiotics, synbiotics, colostrum feeding, and FMT for the treatment and prevention of calf diarrhea.

5.
PLoS One ; 19(1): e0292731, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285680

RESUMO

Canine fecal microbiota profiling provides insight into host health and disease. Standardization of methods for fecal sample storage for microbiomics is currently inconclusive, however. This study investigated the effects of homogenization, the preservative RNAlater, room temperature exposure duration, and short-term storage in the fridge prior to freezing on the canine fecal microbiota profile. Within 15 minutes after voiding, samples were left non-homogenized or homogenized and aliquoted, then kept at room temperature (20-22°C) for 0.5, 4, 8, or 24 hours. Homogenized aliquots then had RNAlater added or not. Following room temperature exposure, all aliquots were stored in the fridge (4°C) for 24 hours prior to storing in the freezer (-20°C), or stored directly in the freezer. DNA extraction, PCR amplification, then sequencing were completed on all samples. Alpha diversity (diversity, evenness, and richness), and beta diversity (community membership and structure), and relative abundances of bacterial genera were compared between treatments. Homogenization and RNAlater minimized changes in the microbial communities over time, although minor changes in relative abundances occurred. Non-homogenized samples had more inter-sample variability and greater changes in beta diversity than homogenized samples. Storage of canine fecal samples in the fridge for 24 h prior to storage in the freezer had little effect on the fecal microbiota profile. Our findings suggest that if immediate analysis of fecal samples is not possible, samples should at least be homogenized to preserve the existing microbiota profile.


Assuntos
Microbiota , Animais , Cães , Fezes/microbiologia , Congelamento , Manejo de Espécimes/métodos , Bactérias/genética , Temperatura , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA