Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Numer Method Biomed Eng ; : e3848, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155149

RESUMO

Reduced order modelling (ROMs) methods, such as proper orthogonal decomposition (POD), systematically reduce the dimensionality of high-fidelity computational models and potentially achieve large gains in execution speed. Machine learning (ML) using neural networks has been used to overcome limitations of traditional ROM techniques when applied to nonlinear problems, which has led to the recent development of reduced order models augmented by machine learning (ML-ROMs). However, the performance of ML-ROMs is yet to be widely evaluated in realistic applications and questions remain regarding the optimal design of ML-ROMs. In this study, we investigate the application of a non-intrusive parametric ML-ROM to a nonlinear, time-dependent fluid dynamics problem in a complex 3D geometry. We construct the ML-ROM using POD for dimensionality reduction and neural networks for interpolation of the ROM coefficients. We compare three different network designs in terms of approximation accuracy and performance. We test our ML-ROM on a flow problem in intracranial aneurysms, where flow variability effects are important when evaluating rupture risk and simulating treatment outcomes. The best-performing network design in our comparison used a two-stage POD reduction, a technique rarely used in previous studies. The best-performing ROM achieved mean test accuracies of 98.6% and 97.6% in the parent vessel and the aneurysm, respectively, while providing speed-up factors of the order 10 5 $$ {10}^5 $$ .

2.
J R Soc Interface ; 21(211): 20230565, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38350616

RESUMO

Vascular flow modelling can improve our understanding of vascular pathologies and aid in developing safe and effective medical devices. Vascular flow models typically involve solving the nonlinear Navier-Stokes equations in complex anatomies and using physiological boundary conditions, often presenting a multi-physics and multi-scale computational problem to be solved. This leads to highly complex and expensive models that require excessive computational time. This review explores accelerated simulation methodologies, specifically focusing on computational vascular flow modelling. We review reduced order modelling (ROM) techniques like zero-/one-dimensional and modal decomposition-based ROMs and machine learning (ML) methods including ML-augmented ROMs, ML-based ROMs and physics-informed ML models. We discuss the applicability of each method to vascular flow acceleration and the effectiveness of the method in addressing domain-specific challenges. When available, we provide statistics on accuracy and speed-up factors for various applications related to vascular flow simulation acceleration. Our findings indicate that each type of model has strengths and limitations depending on the context. To accelerate real-world vascular flow problems, we propose future research on developing multi-scale acceleration methods capable of handling the significant geometric variability inherent to such problems.


Assuntos
Hemodinâmica , Modelos Cardiovasculares , Hemodinâmica/fisiologia , Simulação por Computador , Aceleração
3.
APL Bioeng ; 7(3): 036102, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37426382

RESUMO

How prevalent is spontaneous thrombosis in a population containing all sizes of intracranial aneurysms? How can we calibrate computational models of thrombosis based on published data? How does spontaneous thrombosis differ in normo- and hypertensive subjects? We address the first question through a thorough analysis of published datasets that provide spontaneous thrombosis rates across different aneurysm characteristics. This analysis provides data for a subgroup of the general population of aneurysms, namely, those of large and giant size (>10 mm). Based on these observed spontaneous thrombosis rates, our computational modeling platform enables the first in silico observational study of spontaneous thrombosis prevalence across a broader set of aneurysm phenotypes. We generate 109 virtual patients and use a novel approach to calibrate two trigger thresholds: residence time and shear rate, thus addressing the second question. We then address the third question by utilizing this calibrated model to provide new insight into the effects of hypertension on spontaneous thrombosis. We demonstrate how a mechanistic thrombosis model calibrated on an intracranial aneurysm cohort can help estimate spontaneous thrombosis prevalence in a broader aneurysm population. This study is enabled through a fully automatic multi-scale modeling pipeline. We use the clinical spontaneous thrombosis data as an indirect population-level validation of a complex computational modeling framework. Furthermore, our framework allows exploration of the influence of hypertension in spontaneous thrombosis. This lays the foundation for in silico clinical trials of cerebrovascular devices in high-risk populations, e.g., assessing the performance of flow diverters in aneurysms for hypertensive patients.

4.
Nat Commun ; 12(1): 3861, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162852

RESUMO

The cost of clinical trials is ever-increasing. In-silico trials rely on virtual populations and interventions simulated using patient-specific models and may offer a solution to lower these costs. We present the flow diverter performance assessment (FD-PASS) in-silico trial, which models the treatment of intracranial aneurysms in 164 virtual patients with 82 distinct anatomies with a flow-diverting stent, using computational fluid dynamics to quantify post-treatment flow reduction. The predicted FD-PASS flow-diversion success rates replicate the values previously reported in three clinical trials. The in-silico approach allows broader investigation of factors associated with insufficient flow reduction than feasible in a conventional trial. Our findings demonstrate that in-silico trials of endovascular medical devices can: (i) replicate findings of conventional clinical trials, and (ii) perform virtual experiments and sub-group analyses that are difficult or impossible in conventional trials to discover new insights on treatment failure, e.g. in the presence of side-branches or hypertension.


Assuntos
Simulação por Computador , Hidrodinâmica , Aneurisma Intracraniano/terapia , Stents , Adulto , Algoritmos , Ensaios Clínicos como Assunto/métodos , Feminino , Humanos , Aneurisma Intracraniano/fisiopatologia , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Reprodutibilidade dos Testes , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA