Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 326: 103138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522289

RESUMO

This review focuses on the current understanding regarding lipid crystallisation at oil-water interfaces. The main aspects of crystallisation in bulk lipids will be introduced, allowing for a more comprehensive overview of the crystallisation processes within emulsions. Additionally, the properties of an emulsion and the impact of lipid crystallisation on emulsion stability will be discussed. The effect of different emulsifiers on lipid crystallisation at oil-water interfaces will also be reviewed, however, this will be limited to their impact on the interfacial crystallisation of monoglycerides and diglycerides. The final part of the review highlights the recent methodologies used to study crystallisation at oil-water interfaces.

2.
J Colloid Interface Sci ; 630(Pt B): 202-214, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36327723

RESUMO

HYPOTHESIS: Dairy proteins and mono- and diglycerides (MDG) are often used in unison to tailor the properties of dairy-based emulsions. However, there are significant gaps in our understanding of how proteins affect lipid crystallisation at the oil-water interface. We have used a unique combination of interfacially-sensitive techniques to elucidate the impact of dairy proteins on interfacial MDG crystal formation. EXPERIMENTS: The formation temperature of interfacial MDG crystals was assessed through interfacial tension studies via drop shape analysis. Small and Wide-Angle X-ray Scattering measurements were performed on isolated oil-water interfaces, allowing for in-situ interrogation of MDG crystal structure and concentration at and near the interface. FINDINGS: Dairy proteins are seen to reduce the temperature at which MDG crystals form at the oil-water interface. The displacement of proteins upon interfacial crystal formation was also clearly observed in interfacial tension measurements. For the first time, lipid crystals formed at the oil-water interface have been characterised using X-ray scattering. All scattering studies showed no change to the MDG crystal structures at the oil-water interface in the presence of adsorbed proteins. The results demonstrate that informed selection of emulsifier components is critical to controlling interfacial crystallisation with concomitant impact on emulsion stability.


Assuntos
Óleos , Água , Emulsões/química , Óleos/química , Raios X , Água/química , Emulsificantes
3.
Polymers (Basel) ; 14(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36297943

RESUMO

The crystallinity of polymers strongly affects their properties. For block copolymers, whereby two crystallisable blocks are covalently tethered to one another, the molecular weight of the individual blocks and their relative weight fraction are important structural parameters that control their crystallisation. In the case of block copolymer micelles, these parameters can influence the crystallinity of the core, which has implications for drug encapsulation and release. Therefore, in this study, we aimed to determine how the microstructure of poly(ethylene glycol-b-caprolactone) (PEG-b-PCL) copolymers contributes to the crystallinity of their hydrophobic PCL micelle cores. Using a library of PEG-b-PCL copolymers with PEG number-average molecular weight (Mn) values of 2, 5, and 10 kDa and weight fractions of PCL (fPCL) ranging from 0.11 to 0.67, the thermal behaviour and morphology were studied in blends, bulk, and micelles using differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WXRD), and Synchrotron wide-angle X-ray scattering (WAXS). Compared to PEG and PCL homopolymers, the block copolymers displayed reduced crystallinity in the bulk phase and the individual blocks had a large influence on the crystallisation of one another. The fPCL was determined to be the dominant contributor to the extent and order of crystallisation of the two blocks. When fPCL < 0.35, the initial crystallisation of PEG led to an amorphous PCL phase. At fPCL values between 0.35 and 0.65, PEG crystallisation was followed by PCL crystallisation, whereas this behaviour was reversed when fPCL > 0.65. For lyophilised PEG-b-PCL micelles, the crystallinity of the core increased with increasing fPCL, although the core was predominately amorphous for micelles with fPCL < 0.35. These findings contribute to understanding the relationships between copolymer microstructure and micelle core crystallinity that are important for the design and performance of micellar drug delivery systems, and the broader application of polymer micelles.

4.
J Colloid Interface Sci ; 608(Pt 3): 2839-2848, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34801239

RESUMO

Dairy emulsions contain an intrinsically heterogeneous lipid phase, whose components undergo crystallisation in a manner that is critical to dairy product formulation, storage, and sensory perception. Further complexity is engendered by the diverse array of interfacially-active molecules naturally present within the serum of dairy systems, and those that are added for specific formulation purposes, all of which interact at the lipid-serum interface and modify the impact of lipid crystals on dairy emulsion stability. The work described in this article addresses this complexity, with a specific focus on the impact of temperature cycling and the effect of emulsifier type on the formation and persistence of lipid crystals at lipid-solution interfaces. Profile analysis tensiometry experiments were performed using single droplets of the low melting fraction of dairy lipids, in the presence and absence of emulsifiers (Tween 80 and whey protein isolate, WPI) and during the temperature cycling, to study the formation of monoacylglycerol (MAG) crystals at the lipid-solution interface. Companion experiments on the same lipid systems, and at the same cooling and heating rates, were undertaken with synchrotron small angle X-ray scattering, to specifically analyse the effect of emulsifier type on the formation of triacylglycerol (TAG) crystals at the lipid-solution interface of a model dairy emulsion. These two complementary techniques have revealed that Tween 80 molecules delay MAG and TAG crystal formation by lowering the temperature at which the crystallisation occurs during two cooling cycles. WPI molecules delay the crystallisation of MAGs and TAGs during the first cooling cycle, while MAG crystals form without delay during the second cooling cycle at the same temperature as MAG crystals in an emulsifier free system. The crystallisation of TAGs is inhibited during the second cooling cycle. The observed differences in crystallisation behaviour at the interface upon temperature cycling can provide further insight into the impact of emulsifiers on the long-term stability of emulsion-based dairy systems during storage.


Assuntos
Emulsificantes , Monoglicerídeos , Emulsões , Polissorbatos , Triglicerídeos
5.
Foods ; 11(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35010160

RESUMO

Water-in-oil-in-water (W1/O/W2) emulsions (double emulsions) have often been used for the encapsulation of bioactive compounds such as anthocyanins. Instability of both anthocyanins and double emulsions creates a need for a tailored composition of the aqueous phase. In this work, double emulsions with a gelled internal water phase were produced and monitored over a 20-day storage period. The effect of the electrolyte phase composition (varying electrolyte components, including adipic acid, citric acid, and varying concentration of potassium chloride (KCl)) on anthocyanin and double emulsion stability was analysed using colour analysis, droplet sizing, and emulsion rheology. The effect of electrolytes on colour retention was shown to differ between the primary W1/O emulsion and the secondary W1/O/W2 emulsion. Furthermore, droplet size analysis and emulsion rheology highlighted significant differences in the stability and structural behaviour of the emulsions as a function of electrolyte composition. In terms of colour retention and emulsion stability, a citrate-buffered system performed best. The results of this study highlight the importance of strict control of aqueous phase constituents to prevent anthocyanin degradation and maximise double emulsion stability. Additional experiments analysed the effect of pectin chemistry on the anthocyanin colour retention and leakage, finding no conclusive difference between the unmodified and amidated pectin.

6.
Langmuir ; 31(41): 11249-59, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26421938

RESUMO

The formation of fucoidan/chitosan-based polyelectrolyte multilayers (PEMs) has been studied with in situ Fourier transform infrared (FTIR) spectroscopy. Attenuated total reflectance (ATR) FTIR spectroscopy has been used to follow the sequential build-up of the multilayer, with peaks characteristic of each polymer being seen to increase in intensity with each respective adsorption stage. In addition, spectral processing has allowed for the extraction of spectra from individual adsorbed layers, which have been used to provide unambiguous determination of the adsorbed mass of the PEM at each stage of formation. The PEM was seen to undergo a transition in growth regimes during build-up: from supra-linear to linear. In addition, the wettability of the PEM has been probed at each stage of the build-up, using the captive bubble contact angle technique. The contact angles were uniformly low, but showed variation in value depending on the nature of the outer polymer layer, and this variation correlated with the overall percentage hydration of the PEM (determined from FTIR and quartz crystal microbalance data). The nature of the hydration water within the polyelectrolyte multilayer has also been studied with FTIR spectroscopy, specifically in situ synchrotron ATR FTIR microscopy of the multilayer confined between two solid surfaces. The acquired spectra have enabled the hydrogen bonding environment of the PEM hydration water to be determined. The PEM hydration water is seen to have an environment in which it is subject to fewer hydrogen bonding interactions than in bulk electrolyte solution.


Assuntos
Quitosana/química , Polímeros/síntese química , Polissacarídeos/química , Eletrólitos/síntese química , Eletrólitos/química , Estrutura Molecular , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA