Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Med ; 12(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068474

RESUMO

The decompensation trajectory check is a basic step to assess the clinical course and to plan future therapy in hospitalized patients with acute decompensated heart failure (ADHF). Due to the atypical presentation and clinical complexity, trajectory checks can be challenging in older patients with acute HF. Point-of-care ultrasound (POCUS) has proved to be helpful in the clinical decision-making of patients with dyspnea; however, to date, no study has attempted to verify its role in predicting determinants of ADHF in-hospital worsening. In this single-center, cross-sectional study, we consecutively enrolled patients aged 75 or older hospitalized with ADHF in a tertiary care hospital. All of the patients underwent a complete clinical examination, blood tests, and POCUS, including Lung Ultrasound and Focused Cardiac Ultrasound. Out of 184 patients hospitalized with ADHF, 60 experienced ADHF in-hospital worsening. By multivariable logistic analysis, total Pleural Effusion Score (PEFs) [aO.R.: 1.15 (CI95% 1.02-1.33), p = 0.043] and IVC collapsibility [aO.R.: 0.90 (CI95% 0.83-0.95), p = 0.039] emerged as independent predictors of acute HF worsening after extensive adjustment for potential confounders. In conclusion, POCUS holds promise for enhancing risk assessment, tailoring diuretic treatment, and optimizing discharge timing for older patients with ADHF.

2.
Aging Clin Exp Res ; 35(12): 2887-2901, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37950845

RESUMO

This paper reports the proceedings of a meeting convened by the Research Group on Thoracic Ultrasound in Older People of the Italian Society of Gerontology and Geriatrics, to discuss the current state-of-the-art of clinical research in the field of geriatric thoracic ultrasound and identify unmet research needs and potential areas of development. In the last decade, point-of-care thoracic ultrasound has entered clinical practice for diagnosis and management of several respiratory illnesses, such as bacterial and viral pneumonia, pleural effusion, acute heart failure, and pneumothorax, especially in the emergency-urgency setting. Very few studies, however, have been specifically focused on older patients with frailty and multi-morbidity, who frequently exhibit complex clinical pictures needing multidimensional evaluation. At the present state of knowledge, there is still uncertainty on the best requirements of ultrasound equipment, methodology of examination, and reporting needed to optimize the advantages of thoracic ultrasound implementation in the care of geriatric patients. Other issues regard differential diagnosis between bacterial and aspiration pneumonia, objective grading of interstitial syndrome severity, quantification and monitoring of pleural effusions and solid pleural lesions, significance of ultrasonographic assessment of post-COVID-19 sequelae, and prognostic value of assessment of diaphragmatic thickness and motility. Finally, application of remote ultrasound diagnostics in the community and nursing home setting is still poorly investigated by the current literature. Overall, the presence of several open questions on geriatric applications of thoracic ultrasound represents a strong call to implement clinical research in this field.


Assuntos
COVID-19 , Derrame Pleural , Pneumonia Viral , Humanos , Idoso , Ultrassonografia/métodos , Atenção à Saúde , Derrame Pleural/diagnóstico por imagem
3.
Materials (Basel) ; 16(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36614527

RESUMO

An accurate fracture simulation is often associated with how reliably the material model is represented. Hence, many models dealing with the calibration of ductile damage of materials have already been developed to predict failure initiation. Nevertheless, the challenge remains in obtaining an accurate representation of the fracture growth. Herein, an element deletion algorithm is developed and implemented into finite element open-source software. The deleted elements are replaced by new cells made of a virtual low-stiffness material. To better visualize the failure progression, the final model excludes these virtual cells from the representation. The functionality of the algorithm is tested through a series of two-dimensional simulations on three different geometries with a well-known behavior under uniaxial tension. Moreover, the failure response of a three-dimensional lattice structure is numerically investigated and compared against experimental data. The results of the two-dimensional simulations showed the capability of the algorithm to predict the onset of failure, crack nucleation, and fracture growth. Similarly, the onset and the initial fracture region were accurately captured in the three-dimensional case, with some convergence issues that prevent the visualization of the fracture growth. Overall, the results are encouraging, and the algorithm can be improved to introduce other computational functionalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA