Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nat Commun ; 13(1): 7601, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494347

RESUMO

HSP90 are abundant molecular chaperones, assisting the folding of several hundred client proteins, including substrates involved in tumor growth or neurodegenerative diseases. A complex set of large ATP-driven structural changes occurs during HSP90 functional cycle. However, the existence of such structural rearrangements in apo HSP90 has remained unclear. Here, we identify a metastable excited state in the isolated human HSP90α ATP binding domain. We use solution NMR and mutagenesis to characterize structures of both ground and excited states. We demonstrate that in solution the HSP90α ATP binding domain transiently samples a functionally relevant ATP-lid closed state, distant by more than 30 Å from the ground state. NMR relaxation enables to derive information on the kinetics and thermodynamics of this interconversion, while molecular dynamics simulations establish that the ATP-lid in closed conformation is a metastable exited state. The precise description of the dynamics and structures sampled by human HSP90α ATP binding domain provides information for the future design of new therapeutic ligands.


Assuntos
Proteínas de Choque Térmico HSP90 , Chaperonas Moleculares , Humanos , Proteínas de Choque Térmico HSP90/metabolismo , Ligação Proteica , Chaperonas Moleculares/metabolismo , Conformação Molecular , Trifosfato de Adenosina/metabolismo , Conformação Proteica , Sítios de Ligação
3.
Nat Commun ; 13(1): 1927, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395851

RESUMO

Large oligomeric enzymes control a myriad of cellular processes, from protein synthesis and degradation to metabolism. The 0.5 MDa large TET2 aminopeptidase, a prototypical protease important for cellular homeostasis, degrades peptides within a ca. 60 Å wide tetrahedral chamber with four lateral openings. The mechanisms of substrate trafficking and processing remain debated. Here, we integrate magic-angle spinning (MAS) NMR, mutagenesis, co-evolution analysis and molecular dynamics simulations and reveal that a loop in the catalytic chamber is a key element for enzymatic function. The loop is able to stabilize ligands in the active site and may additionally have a direct role in activating the catalytic water molecule whereby a conserved histidine plays a key role. Our data provide a strong case for the functional importance of highly dynamic - and often overlooked - parts of an enzyme, and the potential of MAS NMR to investigate their dynamics at atomic resolution.


Assuntos
Aminopeptidases , Simulação de Dinâmica Molecular , Aminopeptidases/metabolismo , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Peptídeos
4.
J Biomol NMR ; 75(6-7): 221-232, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34041691

RESUMO

Methyl moieties are highly valuable probes for quantitative NMR studies of large proteins. Hence, their assignment is of the utmost interest to obtain information on both interactions and dynamics of proteins in solution. Here, we present the synthesis of a new precursor that allows connection of leucine and valine pro-S methyl moieties to backbone atoms by linear 13C-chains. This optimized 2H/13C-labelled acetolactate precursor can be combined with existing 13C/2H-alanine and isoleucine precursors in order to directly transfer backbone assignment to the corresponding methyl groups. Using this simple approach leucine and valine pro-S methyl groups can be assigned using a single sample without requiring correction of 1H/2H isotopic shifts on 13C resonances. The approach was demonstrated on the N-terminal domain of human HSP90, for which complete assignment of Ala-ß, Ile-δ1, Leu-δ2, Met-ε, Thr-γ and Val-γ2 methyl groups was obtained.


Assuntos
Proteínas de Choque Térmico HSP90/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Leucina/química , Domínios Proteicos , Valina/química
5.
Biomol NMR Assign ; 15(2): 351-360, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33988824

RESUMO

Prefoldin is a heterohexameric protein assembly which acts as a co-chaperonin for the well conserved Hsp60 chaperonin, present in archaebacteria and the eukaryotic cell cytosol. Prefoldin is a holdase, capturing client proteins and subsequently transferring them to the Hsp60 chamber for refolding. The chaperonin family is implicated in the early stages of protein folding and plays an important role in proteostasis in the cytosol. Here, we report the assignment of 1HN, 15N, 13C', 13Cα, 13Cß, 1Hmethyl, and 13Cmethyl chemical shifts of the 87 kDa prefoldin from the hyperthermophilic archaeon Pyrococcus horikoshii, consisting of two α and four ß subunits. 100% of the [13C, 1H]-resonances of Aß, Iδ1, Iδ2, Tγ2, Vγ2 methyl groups were successfully assigned for both subunits. For the ß subunit, showing partial peak doubling, 80% of the backbone resonances were assigned. In the α subunit, large stretches of backbone resonances were not detectable due to slow (µs-ms) time scale dynamics. This conformational exchange limited the backbone sequential assignment of the α subunit to 57% of residues, which corresponds to 84% of visible NMR signals.


Assuntos
Pyrococcus horikoshii
6.
mBio ; 11(2)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184239

RESUMO

The posttranslational Ca2+-dependent "clip-and-link" activity of large repeat-in-toxin (RTX) proteins starts by Ca2+-dependent structural rearrangement of a highly conserved self-processing module (SPM). Subsequently, an internal aspartate-proline (Asp-Pro) peptide bond at the N-terminal end of SPM breaks, and the liberated C-terminal aspartyl residue can react with a free ε-amino group of an adjacent lysine residue to form a new isopeptide bond. Here, we report a solution structure of the calcium-loaded SPM (Ca-SPM) derived from the FrpC protein of Neisseria meningitidis The Ca-SPM structure defines a unique protein architecture and provides structural insight into the autocatalytic cleavage of the Asp-Pro peptide bond through a "twisted-amide" activation. Furthermore, in-frame deletion of the SPM domain from the ApxIVA protein of Actinobacillus pleuropneumoniae attenuated the virulence of this porcine pathogen in a pig respiratory challenge model. We hypothesize that the Ca2+-dependent clip-and-link activity represents an unconventional strategy for Gram-negative pathogens to adhere to the host target cell surface.IMPORTANCE The Ca2+-dependent clip-and-link activity of large repeat-in-toxin (RTX) proteins is an exceptional posttranslational process in which an internal domain called a self-processing module (SPM) mediates Ca2+-dependent processing of a highly specific aspartate-proline (Asp-Pro) peptide bond and covalent linkage of the released aspartyl to an adjacent lysine residue through an isopeptide bond. Here, we report the solution structures of the Ca2+-loaded SPM (Ca-SPM) defining the mechanism of the autocatalytic cleavage of the Asp414-Pro415 peptide bond of the Neisseria meningitidis FrpC exoprotein. Moreover, deletion of the SPM domain in the ApxIVA protein, the FrpC homolog of Actinobacillus pleuropneumoniae, resulted in attenuation of virulence of the bacterium in a pig infection model, indicating that the Ca2+-dependent clip-and-link activity plays a role in the virulence of Gram-negative pathogens.


Assuntos
Proteínas de Bactérias/química , Toxinas Bacterianas/química , Cálcio/metabolismo , Proteínas de Membrana/química , Processamento de Proteína Pós-Traducional , Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/química , Actinobacillus pleuropneumoniae/patogenicidade , Animais , Proteínas de Bactérias/genética , Neisseria meningitidis/química , Suínos , Virulência
7.
Structure ; 27(10): 1537-1546.e4, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31402220

RESUMO

Intrinsically disordered proteins (IDPs) underpin biological regulation and hence are highly desirable drug-development targets. NMR is normally the tool of choice for studying the conformational preferences of IDPs, but the association of regions with residual structure into partially collapsed states can lead to poor spectral quality. The bHLH-LZ domain of the oncoprotein Myc is an archetypal example of such behavior. To circumvent spectral limitations, we apply chemical denaturant titration (CDT)-NMR, which exploits the predictable manner in which chemical denaturants disrupt residual structure and the rapid exchange between conformers in IDP ensembles. The secondary structure propensities and tertiary interactions of Myc are determined for all bHLH-LZ residues, including those with poor NMR properties under native conditions. This reveals conformations that are not predictable using existing crystal structures. The CDT-NMR method also maps sites perturbed by the prototype Myc inhibitor, 10058-F4, to areas of residual structure.


Assuntos
Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sítios de Ligação , Sequências Hélice-Alça-Hélice , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Desnaturação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Tiazóis/farmacologia
8.
J Am Chem Soc ; 141(28): 11183-11195, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31199882

RESUMO

Aromatic residues are located at structurally important sites of many proteins. Probing their interactions and dynamics can provide important functional insight but is challenging in large proteins. Here, we introduce approaches to characterize the dynamics of phenylalanine residues using 1H-detected fast magic-angle spinning (MAS) NMR combined with a tailored isotope-labeling scheme. Our approach yields isolated two-spin systems that are ideally suited for artifact-free dynamics measurements, and allows probing motions effectively without molecular weight limitations. The application to the TET2 enzyme assembly of ∼0.5 MDa size, the currently largest protein assigned by MAS NMR, provides insights into motions occurring on a wide range of time scales (picoseconds to milliseconds). We quantitatively probe ring-flip motions and show the temperature dependence by MAS NMR measurements down to 100 K. Interestingly, favorable line widths are observed down to 100 K, with potential implications for DNP NMR. Furthermore, we report the first 13C R1ρ MAS NMR relaxation-dispersion measurements and detect structural excursions occurring on a microsecond time scale in the entry pore to the catalytic chamber and at a trimer interface that was proposed as the exit pore. We show that the labeling scheme with deuteration at ca. 50 kHz MAS provides superior resolution compared to 100 kHz MAS experiments with protonated, uniformly 13C-labeled samples.


Assuntos
Aminopeptidases/química , Ressonância Magnética Nuclear Biomolecular , Termodinâmica , Aminopeptidases/metabolismo , Isótopos de Carbono , Conformação Proteica , Prótons , Pyrococcus horikoshii/enzimologia
9.
Nat Commun ; 10(1): 2697, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217444

RESUMO

Atomic-resolution structure determination is crucial for understanding protein function. Cryo-EM and NMR spectroscopy both provide structural information, but currently cryo-EM does not routinely give access to atomic-level structural data, and, generally, NMR structure determination is restricted to small (<30 kDa) proteins. We introduce an integrated structure determination approach that simultaneously uses NMR and EM data to overcome the limits of each of these methods. The approach enables structure determination of the 468 kDa large dodecameric aminopeptidase TET2 to a precision and accuracy below 1 Å by combining secondary-structure information obtained from near-complete magic-angle-spinning NMR assignments of the 39 kDa-large subunits, distance restraints from backbone amides and ILV methyl groups, and a 4.1 Å resolution EM map. The resulting structure exceeds current standards of NMR and EM structure determination in terms of molecular weight and precision. Importantly, the approach is successful even in cases where only medium-resolution cryo-EM data are available.


Assuntos
Complexos Multienzimáticos/ultraestrutura , Estrutura Quaternária de Proteína , Aminopeptidases/química , Aminopeptidases/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica/métodos , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Peso Molecular , Complexos Multienzimáticos/química , Pyrococcus horikoshii
10.
Sci Adv ; 4(9): eaau4196, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30255156

RESUMO

Chaperonins are ubiquitous protein assemblies present in bacteria, eukaryota, and archaea, facilitating the folding of proteins, preventing protein aggregation, and thus participating in maintaining protein homeostasis in the cell. During their functional cycle, they bind unfolded client proteins inside their double ring structure and promote protein folding by closing the ring chamber in an adenosine 5'-triphosphate (ATP)-dependent manner. Although the static structures of fully open and closed forms of chaperonins were solved by x-ray crystallography or electron microscopy, elucidating the mechanisms of such ATP-driven molecular events requires studying the proteins at the structural level under working conditions. We introduce an approach that combines site-specific nuclear magnetic resonance observation of very large proteins, enabled by advanced isotope labeling methods, with an in situ ATP regeneration system. Using this method, we provide functional insight into the 1-MDa large hsp60 chaperonin while processing client proteins and reveal how nucleotide binding, hydrolysis, and release control switching between closed and open states. While the open conformation stabilizes the unfolded state of client proteins, the internalization of the client protein inside the chaperonin cavity speeds up its functional cycle. This approach opens new perspectives to study structures and mechanisms of various ATP-driven biological machineries in the heat of action.


Assuntos
Chaperonina 60/química , Chaperonina 60/metabolismo , Chaperoninas do Grupo II/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Chaperonina 60/genética , Chaperoninas do Grupo II/metabolismo , Malato Sintase/química , Malato Sintase/metabolismo , Muramidase/química , Muramidase/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Desdobramento de Proteína , Pyrococcus horikoshii/química
11.
J Biol Chem ; 293(24): 9301-9310, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29695509

RESUMO

Myelocytomatosis proto-oncogene transcription factor (Myc) is an intrinsically disordered protein with critical roles in cellular homeostasis and neoplastic transformation. It is tightly regulated in the cell, with Myc phosphorylation playing a major role. In addition to the well-described tandem phosphorylation of Thr-52 and Ser-62 in the Myc transactivation domain linked to its degradation, P21 (RAC1)-activated kinase 2 (PAK2)-mediated phosphorylation of serine and threonine residues in the C-terminal basic helix-loop-helix leucine zipper (bHLH-LZ) region regulates Myc transcriptional activity. Here we report that PAK2 preferentially phosphorylates Myc twice, at Thr-358 and Ser-373, with only a minor fraction being modified at the previously identified Thr-400 site. For transcriptional activity, Myc binds E-box DNA elements, requiring its heterodimerization with Myc-associated factor X (Max) via the bHLH-LZ regions. Using isothermal calorimetry (ITC), we found that Myc phosphorylation destabilizes this ternary protein-DNA complex by decreasing Myc's affinity for Max by 2 orders of magnitude, suggesting a major effect of phosphorylation on this complex. Phosphomimetic substitutions revealed that Ser-373 dominates the effect on Myc-Max heterodimerization. Moreover, a T400D substitution disrupted Myc's affinity for Max. ITC, NMR, and CD analyses of several Myc variants suggested that the effect of phosphorylation on the Myc-Max interaction is caused by secondary structure disruption during heterodimerization rather than by a change in the structurally disordered state of Myc or by phosphorylation-induced electrostatic repulsion in the heterodimer. Our findings provide critical insights into the effects of PAK2-catalyzed phosphorylation of Myc on its interactions with Max and DNA.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , DNA/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sequência de Aminoácidos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Humanos , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica , Conformação Proteica em alfa-Hélice , Mapas de Interação de Proteínas , Estabilidade Proteica , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/química
12.
Chemphyschem ; 18(19): 2697-2703, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28792111

RESUMO

Solid-state NMR spectroscopy can provide insight into protein structure and dynamics at the atomic level without inherent protein size limitations. However, a major hurdle to studying large proteins by solid-state NMR spectroscopy is related to spectral complexity and resonance overlap, which increase with molecular weight and severely hamper the assignment process. Here the use of two sets of experiments is shown to expand the tool kit of 1 H-detected assignment approaches, which correlate a given amide pair either to the two adjacent CO-CA pairs (4D hCOCANH/hCOCAcoNH), or to the amide 1 H of the neighboring residue (3D HcocaNH/HcacoNH, which can be extended to 5D). The experiments are based on efficient coherence transfers between backbone atoms using INEPT transfers between carbons and cross-polarization for heteronuclear transfers. The utility of these experiments is exemplified with application to assemblies of deuterated, fully amide-protonated proteins from approximately 20 to 60 kDa monomer, at magic-angle spinning (MAS) frequencies from approximately 40 to 55 kHz. These experiments will also be applicable to protonated proteins at higher MAS frequencies. The resonance assignment of a domain within the 50.4 kDa bacteriophage T5 tube protein pb6 is reported, and this is compared to NMR assignments of the isolated domain in solution. This comparison reveals contacts of this domain to the core of the polymeric tail tube assembly.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Amidas/química
13.
Sci Adv ; 3(4): e1601601, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28435872

RESUMO

The spontaneous formation of biological higher-order structures from smaller building blocks, called self-assembly, is a fundamental attribute of life. Although the protein self-assembly is a time-dependent process that occurs at the molecular level, its current understanding originates either from static structures of trapped intermediates or from modeling. Nuclear magnetic resonance (NMR) spectroscopy has the unique ability to monitor structural changes in real time; however, its size limitation and time-resolution constraints remain a challenge when studying the self-assembly of large biological particles. We report the application of methyl-specific isotopic labeling combined with relaxation-optimized NMR spectroscopy to overcome both size- and time-scale limitations. We report for the first time the self-assembly process of a half-megadalton protein complex that was monitored at the structural level, including the characterization of intermediate states, using a mutagenesis-free strategy. NMR was used to obtain individual kinetics data on the different transient intermediates and the formation of final native particle. In addition, complementary time-resolved electron microscopy and native mass spectrometry were used to characterize the low-resolution structures of oligomerization intermediates.


Assuntos
Proteínas Arqueais/química , Peptídeo Hidrolases/química , Multimerização Proteica , Pyrococcus horikoshii/enzimologia , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína
14.
Chem Commun (Camb) ; 52(61): 9558-61, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27385633

RESUMO

Solid-state NMR spectroscopy allows the characterization of the structure, interactions and dynamics of insoluble and/or very large proteins. Sensitivity and resolution are often major challenges for obtaining atomic-resolution information, in particular for very large protein complexes. Here we show that the use of deuterated, specifically CH3-labelled proteins result in significant sensitivity gains compared to previously employed CHD2 labelling, while line widths increase only marginally. We apply this labelling strategy to a 468 kDa-large dodecameric aminopeptidase, TET2, and the 1.6 MDa-large 50S ribosome subunit of Thermus thermophilus.

15.
Mol Cell ; 62(1): 47-62, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27058787

RESUMO

Calcium-binding RTX proteins are equipped with C-terminal secretion signals and translocate from the Ca(2+)-depleted cytosol of Gram-negative bacteria directly into the Ca(2+)-rich external milieu, passing through the "channel-tunnel" ducts of type I secretion systems (T1SSs). Using Bordetella pertussis adenylate cyclase toxin, we solved the structure of an essential C-terminal assembly that caps the RTX domains of RTX family leukotoxins. This is shown to scaffold directional Ca(2+)-dependent folding of the carboxy-proximal RTX repeat blocks into ß-rolls. The resulting intramolecular Brownian ratchets then prevent backsliding of translocating RTX proteins in the T1SS conduits and thereby accelerate excretion of very large RTX leukotoxins from bacterial cells by a vectorial "push-ratchet" mechanism. Successive Ca(2+)-dependent and cosecretional acquisition of a functional RTX toxin structure in the course of T1SS-mediated translocation, through RTX domain folding from the C-terminal cap toward the N terminus, sets a paradigm that opens for design of virulence inhibitors of major pathogens.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Cálcio/metabolismo , Bactérias Gram-Negativas/metabolismo , Sistemas de Secreção Tipo I/metabolismo , Toxina Adenilato Ciclase/química , Toxina Adenilato Ciclase/metabolismo , Animais , Bordetella pertussis/química , Bordetella pertussis/enzimologia , Linhagem Celular , Bactérias Gram-Negativas/química , Camundongos , Modelos Moleculares , Dobramento de Proteína , Estrutura Secundária de Proteína , Transporte Proteico
16.
Soft Matter ; 12(2): 531-41, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26489523

RESUMO

Protein folding is governed by a balance of non-covalent interactions, of which cation-π and π-π play important roles. Theoretical calculations revealed a strong cooperativity between cation-π involving alkali and alkaline earth metal ions and π-π interactions, but however, no experimental evidence was provided in this regard. Here, we characterized a Ca(2+)-binding self-processing module (SPM), which mediates a highly-specific Ca(2+)-dependent autocatalytic processing of iron-regulated protein FrpC secreted by the pathogenic Gram-negative bacterium Neisseria meningitidis. The SPM undergoes a Ca(2+)-induced transition from an intrinsically unstructured conformation to the compact protein fold that is ultimately stabilized by the π-π interaction between two unique tryptophan residues arranged in the T-shaped orientation. Moreover, the pair of tryptophans is located in a close vicinity of a calcium-binding site, suggesting the involvement of a Ca(2+)-assisted π-π interaction in the stabilization of the tertiary structure of the SPM. This makes the SPM an excellent model for the investigation of the Ca(2+)-assisted π-π interaction during Ca(2+)-induced protein folding.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Cálcio/farmacologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Sítios de Ligação , Conformação Proteica/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos
17.
Angew Chem Int Ed Engl ; 53(17): 4312-7, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24644028

RESUMO

The function of proteins depends on their ability to sample a variety of states differing in structure and free energy. Deciphering how the various thermally accessible conformations are connected, and understanding their structures and relative energies is crucial in rationalizing protein function. Many biomolecular reactions take place within microseconds to milliseconds, and this timescale is therefore of central functional importance. Here we show that R1ρ relaxation dispersion experiments in magic-angle-spinning solid-state NMR spectroscopy make it possible to investigate the thermodynamics and kinetics of such exchange process, and gain insight into structural features of short-lived states.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Deutério/química , Humanos , Modelos Moleculares , Conformação Proteica , Prótons , Termodinâmica , Ubiquitina/química
18.
J Biol Chem ; 288(31): 22333-45, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23782691

RESUMO

Tooth enamel, the hardest tissue in the body, is formed by the evolutionarily highly conserved biomineralization process that is controlled by extracellular matrix proteins. The intrinsically disordered matrix protein ameloblastin (AMBN) is the most abundant nonamelogenin protein of the developing enamel and a key element for correct enamel formation. AMBN was suggested to be a cell adhesion molecule that regulates proliferation and differentiation of ameloblasts. Nevertheless, detailed structural and functional studies on AMBN have been substantially limited by the paucity of the purified nondegraded protein. With this study, we have developed a procedure for production of a highly purified form of recombinant human AMBN in quantities that allowed its structural characterization. Using size exclusion chromatography, analytical ultracentrifugation, transmission electron, and atomic force microscopy techniques, we show that AMBN self-associates into ribbon-like supramolecular structures with average widths and thicknesses of 18 and 0.34 nm, respectively. The AMBN ribbons exhibited lengths ranging from tens to hundreds of nm. Deletion analysis and NMR spectroscopy revealed that an N-terminal segment encoded by exon 5 comprises two short independently structured regions and plays a key role in self-assembly of AMBN.


Assuntos
Proteínas do Esmalte Dentário/metabolismo , Éxons , Cromatografia em Gel , Dicroísmo Circular , Proteínas do Esmalte Dentário/química , Proteínas do Esmalte Dentário/genética , Eletroforese em Gel de Poliacrilamida , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
J Mol Biol ; 392(1): 100-14, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19527730

RESUMO

The high-resolution structure of the N-terminal domain (NTD) of the retroviral capsid protein (CA) of Mason-Pfizer monkey virus (M-PMV), a member of the betaretrovirus family, has been determined by NMR. The M-PMV NTD CA structure is similar to the other retroviral capsid structures and is characterized by a six alpha-helix bundle and an N-terminal beta-hairpin, stabilized by an interaction of highly conserved residues, Pro1 and Asp57. Since the role of the beta-hairpin has been shown to be critical for formation of infectious viral core, we also investigated the functional role of M-PMV beta-hairpin in two mutants (i.e., DeltaP1NTDCA and D57ANTDCA) where the salt bridge stabilizing the wild-type structure was disrupted. NMR data obtained for these mutants were compared with those obtained for the wild type. The main structural changes were observed within the beta-hairpin structure; within helices 2, 3, and 5; and in the loop connecting helices 2 and 3. This observation is supported by biochemical data showing different cleavage patterns of the wild-type and the mutated capsid-nucleocapsid fusion protein (CANC) by M-PMV protease. Despite these structural changes, the mutants with disrupted salt bridge are still able to assemble into immature, spherical particles. This confirms that the mutual interaction and topology within the beta-hairpin and helix 3 might correlate with the changes in interaction between immature and mature lattices.


Assuntos
Proteínas do Capsídeo/química , Vírus dos Macacos de Mason-Pfizer/química , Substituição de Aminoácidos , Modelos Moleculares , Proteínas Mutantes/química , Ressonância Magnética Nuclear Biomolecular/métodos , Estrutura Terciária de Proteína , Deleção de Sequência
20.
FEBS J ; 275(21): 5325-31, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18803667

RESUMO

The construction of hybrids between colicins U and Y and the mutagenesis of the colicin Y gene (cya) have revealed amino acid residues important for interactions between colicin Y and its cognate immunity protein (Cyi). Four such residues (I578, T582, Y586 and V590) were found in helices 8 and 9 of the colicin Y pore-forming domain. To verify the importance of these residues, the corresponding amino acids in the colicin B protein were mutated to the residues present in colicin Y. An Escherichia coli strain with cloned colicin Y immunity gene (cyi) inactivated this mutant, but not the wild-type colicin B. In addition, interacting amino acid pairs in Cya and Cyi were identified using a set of Cyi point mutant strains. These data are consistent with antiparallel helix-helix interactions between Cyi helix T3 and Cya helix 8 of the pore-forming domain as a molecular mechanism of colicin Y inactivation by its immunity protein.


Assuntos
Colicinas/química , Escherichia coli K12/química , Proteínas de Escherichia coli/química , Sítios de Ligação , Colicinas/metabolismo , Escherichia coli K12/imunologia , Proteínas de Escherichia coli/metabolismo , Imunidade , Ligação Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA