Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods Enzymol ; 685: 225-240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37245903

RESUMO

Short-chain dehydrogenases/reductases (SDR) form a large enzyme superfamily playing important roles in health and disease. Furthermore, they are useful tools in biocatalysis. Unveiling the nature of the transition state for hydride transfer is a crucial undertaking toward defining the physicochemical underpinnings of catalysis by SDR enzymes, including possible contributions from quantum mechanical tunneling. Primary deuterium kinetic isotope effects can uncover the contribution from chemistry to the rate-limiting step and potentially provide detailed information on the hydride-transfer transition state in SDR-catalyzed reactions. For the latter, however, one needs to determine the intrinsic isotope effect: that which would be measured if hydride transfer were rate determining. Alas, as is the case for many other enzymatic reactions, those catalyzed by SDRs are often limited by the rate of isotope-insensitive steps, such as product release and conformational changes, which masks the expression of the intrinsic isotope effect. This can be overcome by the powerful yet underexplored method of Palfey and Fagan via which intrinsic kinetic isotope effects can be extracted from pre-steady-state kinetics data. SDRs are ideal systems to which this method can be applied. We have employed this approach to elucidate the transition states for hydride transfer catalyzed by NADH-dependent cold- and warm-adapted (R)-3-hydroxybutyrate dehydrogenase. Experimental conditions which simplify the analysis are discussed.


Assuntos
Hidroxibutirato Desidrogenase , Deutério/química , Cinética , Catálise , Biocatálise
2.
ACS Infect Dis ; 8(1): 197-209, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34928596

RESUMO

ATP phosphoribosyltransferase (ATPPRT) catalyzes the first step of histidine biosynthesis in bacteria, namely, the condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate (PRPP) to generate N1-(5-phospho-ß-d-ribosyl)-ATP (PRATP) and pyrophosphate. Catalytic (HisGS) and regulatory (HisZ) subunits assemble in a hetero-octamer where HisZ activates HisGS and mediates allosteric inhibition by histidine. In Acinetobacter baumannnii, HisGS is necessary for the bacterium to persist in the lung during pneumonia. Inhibition of ATPPRT is thus a promising strategy for specific antibiotic development. Here, A. baumannii ATPPRT is shown to follow a rapid equilibrium random kinetic mechanism, unlike any other ATPPRT. Histidine noncompetitively inhibits ATPPRT. Binding kinetics indicates histidine binds to free ATPPRT and to ATPPRT:PRPP and ATPPRT:ATP binary complexes with similar affinity following a two-step binding mechanism, but with distinct kinetic partition of the initial enzyme:inhibitor complex. The dipeptide histidine-proline inhibits ATPPRT competitively and likely uncompetitively, respectively, against PRPP and ATP. Rapid kinetics analysis shows His-Pro binds to the ATPPRT:ATP complex via a two-step binding mechanism. A related HisZ that shares 43% sequence identity with A. baumannii HisZ is a tight-binding allosteric inhibitor of A. baumannii HisGS. These findings lay the foundation for inhibitor design against A. baumannii ATPPRT.


Assuntos
ATP Fosforribosiltransferase , Acinetobacter baumannii , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Acinetobacter baumannii/metabolismo , Dipeptídeos , Histidina , Cinética
3.
Biochemistry ; 60(27): 2186-2194, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34190541

RESUMO

(R)-3-Hydroxybutyrate dehydrogenase (HBDH) catalyzes the NADH-dependent reduction of 3-oxocarboxylates to (R)-3-hydroxycarboxylates. The active sites of a pair of cold- and warm-adapted HBDHs are identical except for a single residue, yet kinetics evaluated at -5, 0, and 5 °C show a much higher steady-state rate constant (kcat) for the cold-adapted than for the warm-adapted HBDH. Intriguingly, single-turnover rate constants (kSTO) are strikingly similar between the two orthologues. Psychrophilic HBDH primary deuterium kinetic isotope effects on kcat (Dkcat) and kSTO (DkSTO) decrease at lower temperatures, suggesting more efficient hydride transfer relative to other steps as the temperature decreases. However, mesophilic HBDH Dkcat and DkSTO are generally temperature-independent. The DkSTO data allowed calculation of intrinsic primary deuterium kinetic isotope effects. Intrinsic isotope effects of 4.2 and 3.9 for cold- and warm-adapted HBDH, respectively, at 5 °C, supported by quantum mechanics/molecular mechanics calculations, point to a late transition state for both orthologues. Conversely, intrinsic isotope effects of 5.7 and 3.1 for cold- and warm-adapted HBDH, respectively, at -5 °C indicate the transition state becomes nearly symmetric for the psychrophilic enzyme, but more asymmetric for the mesophilic enzyme. His-to-Asn and Asn-to-His mutations in the psychrophilic and mesophilic HBDH active sites, respectively, swap the single active-site position where these orthologues diverge. At 5 °C, the His-to-Asn mutation in psychrophilic HBDH decreases Dkcat to 3.1, suggesting a decrease in transition-state symmetry, while the His-to-Asn mutation in mesophilic HBDH increases Dkcat to 4.4, indicating an increase in transition-state symmetry. Hence, temperature adaptation and a single divergent active-site residue may influence transition-state geometry in HBDHs.


Assuntos
Proteínas de Bactérias/metabolismo , Hidroxibutirato Desidrogenase/metabolismo , Psychrobacter/enzimologia , Proteínas de Bactérias/química , Domínio Catalítico , Temperatura Baixa , Hidroxibutirato Desidrogenase/química , Cinética , Modelos Moleculares , Psychrobacter/química , Psychrobacter/metabolismo
4.
ACS Catal ; 10(24): 15019-15032, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33391858

RESUMO

The enzyme (R)-3-hydroxybutyrate dehydrogenase (HBDH) catalyzes the enantioselective reduction of 3-oxocarboxylates to (R)-3-hydroxycarboxylates, the monomeric precursors of biodegradable polyesters. Despite its application in asymmetric reduction, which prompted several engineering attempts of this enzyme, the order of chemical events in the active site, their contributions to limit the reaction rate, and interactions between the enzyme and non-native 3-oxocarboxylates have not been explored. Here, a combination of kinetic isotope effects, protein crystallography, and quantum mechanics/molecular mechanics (QM/MM) calculations were employed to dissect the HBDH mechanism. Initial velocity patterns and primary deuterium kinetic isotope effects establish a steady-state ordered kinetic mechanism for acetoacetate reduction by a psychrophilic and a mesophilic HBDH, where hydride transfer is not rate limiting. Primary deuterium kinetic isotope effects on the reduction of 3-oxovalerate indicate that hydride transfer becomes more rate limiting with this non-native substrate. Solvent and multiple deuterium kinetic isotope effects suggest hydride and proton transfers occur in the same transition state. Crystal structures were solved for both enzymes complexed to NAD+:acetoacetate and NAD+:3-oxovalerate, illustrating the structural basis for the stereochemistry of the 3-hydroxycarboxylate products. QM/MM calculations using the crystal structures as a starting point predicted a higher activation energy for 3-oxovalerate reduction catalyzed by the mesophilic HBDH, in agreement with the higher reaction rate observed experimentally for the psychrophilic orthologue. Both transition states show concerted, albeit not synchronous, proton and hydride transfers to 3-oxovalerate. Setting the MM partial charges to zero results in identical reaction activation energies with both orthologues, suggesting the difference in activation energy between the reactions catalyzed by cold- and warm-adapted HBDHs arises from differential electrostatic stabilization of the transition state. Mutagenesis and phylogenetic analysis reveal the catalytic importance of His150 and Asn145 in the respective orthologues.

5.
Biochemistry ; 57(49): 6757-6761, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30472832

RESUMO

The temperature dependence of psychrophilic and mesophilic ( R)-3-hydroxybutyrate dehydrogenase steady-state rates yields nonlinear and linear Eyring plots, respectively. Solvent viscosity effects and multiple- and single-turnover pre-steady-state kinetics demonstrate that while product release is rate-limiting at high temperatures for the psychrophilic enzyme, either interconversion between enzyme-substrate and enzyme-product complexes or a step prior to it limits the rate at low temperatures. Unexpectedly, a similar change in the rate-limiting step is observed with the mesophilic enzyme, where a step prior to chemistry becomes rate-limiting at low temperatures. This observation may have implications for past and future interpretations of temperature-rate profiles.


Assuntos
Hidroxibutirato Desidrogenase/química , Hidroxibutirato Desidrogenase/metabolismo , Acetoacetatos/metabolismo , Acinetobacter baumannii/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Cinética , Modelos Lineares , Modelos Biológicos , Psychrobacter/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solventes , Especificidade por Substrato , Temperatura , Valeratos/metabolismo , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA