Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38287928

RESUMO

CRISPR/Cas9 gene editing technology has revolutionized genetic engineering. However, the nuclear dynamics of Cas9 in eukaryotic cells, particularly in the model organism Saccharomyces cerevisiae , remains poorly understood. Here, we constructed yeast strains expressing fluorescently tagged Cas9 variants, revealing their accumulation in the nucleus over time. Notably, Cas9 was non-uniformly distributed in the nucleoplasm during the initial hours, suggesting the formation of a condensate. This condensate often co-localizes with the nucleolus and associates the target site to its periphery. Our findings provide insights into Cas9 nuclear dynamics in yeast, advancing our understanding of CRISPR/Cas9-based genetic manipulation.

2.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37799204

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has underscored the need for rapid and accurate diagnostic methods. Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) has emerged as a promising molecular tool in least developed countries due to its simplicity, speed, and sensitivity. Nevertheless, reliable SARS-CoV-2 detection can be challenged by the chain custody of the samples. In this context, carrier RNA can act as a preservative. In this study, we explored the potential of yeast total and transference RNA (tRNA) in the SARS-CoV-2 RT-LAMP. We have found that most optimal conditions are reached with 1 µg/µL tRNA in the RT-LAMP reaction.

3.
ACS Omega ; 8(29): 26479-26496, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521653

RESUMO

A library of structurally related coumarins was generated through synthesis reactions and chemical modification reactions to obtain derivatives with antiproliferative activity both in vivo and in vitro. Out of a total of 35 structurally related coumarin derivatives, seven of them showed inhibitory activity in in vitro tests against Taq DNA polymerase with IC50 values lower than 250 µM. The derivatives 4-(chloromethyl)-5,7-dihydroxy-2H-chromen-2-one (2d) and 4-((acetylthio)methyl)-2-oxo-2H-chromen-7-yl acetate (3c) showed the most promising anti-polymerase activity with IC50 values of 20.7 ± 2.10 and 48.25 ± 1.20 µM, respectively. Assays with tumor cell lines (HEK 293 and HCT-116) were carried out, and the derivative 4-(chloromethyl)-7,8-dihydroxy-2H-chromen-2-one (2c) was the most promising, with an IC50 value of 8.47 µM and a selectivity index of 1.87. In addition, the derivatives were evaluated against Saccharomyces cerevisiae strains that report about common modes of actions, including DNA damage, that are expected for agents that cause replicative stress. The coumarin derivatives 7-(2-(oxiran-2-yl)ethoxy)-2H-chromen-2-one (5b) and 7-(3-(oxiran-2-yl)propoxy)-2H-chromen-2-one (5c) caused DNA damage in S. cerevisiae. The O-alkenylepoxy group stands out as that with the most important functionality within this family of 35 derivatives, presenting a very good profile as an antiproliferative scaffold. Finally, the in vitro antiretroviral capacity was tested through RT-PCR assays. Derivative 5c showed inhibitory activity below 150 µM with an IC50 value of 134.22 ± 2.37 µM, highlighting the O-butylepoxy group as the functionalization responsible for the activity.

4.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372977

RESUMO

The morphology of the nucleus is roughly spherical in most eukaryotic cells. However, this organelle shape needs to change as the cell travels through narrow intercellular spaces during cell migration and during cell division in organisms that undergo closed mitosis, i.e., without dismantling the nuclear envelope, such as yeast. In addition, the nuclear morphology is often modified under stress and in pathological conditions, being a hallmark of cancer and senescent cells. Thus, understanding nuclear morphological dynamics is of uttermost importance, as pathways and proteins involved in nuclear shaping can be targeted in anticancer, antiaging, and antifungal therapies. Here, we review how and why the nuclear shape changes during mitotic blocks in yeast, introducing novel data that associate these changes with both the nucleolus and the vacuole. Altogether, these findings suggest a close relationship between the nucleolar domain of the nucleus and the autophagic organelle, which we also discuss here. Encouragingly, recent evidence in tumor cell lines has linked aberrant nuclear morphology to defects in lysosomal function.


Assuntos
Saccharomyces cerevisiae , Vacúolos , Núcleo Celular/metabolismo , Mitose , Nucléolo Celular/metabolismo
5.
FEBS Lett ; 596(23): 3087-3102, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36053795

RESUMO

Elucidating the mechanism of action of an antifungal or cytotoxic compound is a time-consuming process. Yeast chemogenomic profiling provides a compelling solution to the problem but is experimentally complex. Here, we demonstrate the use of a highly simplified yeast chemical genetic assay comprising just 89 yeast deletion strains, each diagnostic for a specific mechanism of action. We use the assay to investigate the mechanism of action of two antifungal chalcone compounds, trans-chalcone and 4'-hydroxychalcone, and narrow down the mechanism to transcriptional stress. Crucially, the assay eliminates mechanisms of action such as topoisomerase I inhibition and membrane disruption that have been suggested for related chalcone compounds. We propose this simplified assay as a useful tool to rapidly identify common off-target mechanisms.


Assuntos
Chalcona , Chalconas , Chalcona/farmacologia , Saccharomyces cerevisiae/genética , Antifúngicos/farmacologia , Chalconas/farmacologia
6.
Life Sci Alliance ; 5(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35961781

RESUMO

The ribosomal DNA (rDNA) array of Saccharomyces cerevisiae has served as a model to address chromosome organization. In cells arrested before anaphase (mid-M), the rDNA acquires a highly structured chromosomal organization referred to as the rDNA loop, whose length can double the cell diameter. Previous works established that complexes such as condensin and cohesin are essential to attain this structure. Here, we report that the rDNA loop adopts distinct presentations that arise as spatial adaptations to changes in the nuclear morphology triggered during mid-M arrests. Interestingly, the formation of the rDNA loop results in the appearance of a space under the loop (SUL) which is devoid of nuclear components yet colocalizes with the vacuole. We show that the rDNA-associated nuclear envelope (NE) often reshapes into a ladle to accommodate the vacuole in the SUL, with the nucleus becoming bilobed and doughnut-shaped. Finally, we demonstrate that the formation of the rDNA loop and the SUL require TORC1, membrane synthesis and functional vacuoles, yet is independent of nucleus-vacuole junctions and rDNA-NE tethering.


Assuntos
Proteínas de Saccharomyces cerevisiae , Vacúolos , Anáfase , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
7.
Sci Rep ; 11(1): 14940, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294749

RESUMO

The key role of Topoisomerase II (Top2) is the removal of topological intertwines between sister chromatids. In yeast, inactivation of Top2 brings about distinct cell cycle responses. In the case of the conditional top2-5 allele, interphase and mitosis progress on schedule but cells suffer from a chromosome segregation catastrophe. We here show that top2-5 chromosomes fail to enter a Pulsed-Field Gel Electrophoresis (PFGE) in the first cell cycle, a behavior traditionally linked to the presence of replication and recombination intermediates. We distinguished two classes of affected chromosomes: the rDNA-bearing chromosome XII, which fails to enter a PFGE at the beginning of S-phase, and all the other chromosomes, which fail at a postreplicative stage. In synchronously cycling cells, this late PFGE retention is observed in anaphase; however, we demonstrate that this behavior is independent of cytokinesis, stabilization of anaphase bridges, spindle pulling forces and, probably, anaphase onset. Strikingly, once the PFGE retention has occurred it becomes refractory to Top2 re-activation. DNA combing, two-dimensional electrophoresis, genetic analyses, and GFP-tagged DNA damage markers suggest that neither recombination intermediates nor unfinished replication account for the postreplicative PFGE shift, which is further supported by the fact that the shift does not trigger the G2/M checkpoint. We propose that the absence of Top2 activity leads to a general chromosome structural/topological change in mitosis.


Assuntos
Cromossomos Fúngicos/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Ciclo Celular , Segregação de Cromossomos , DNA Topoisomerases Tipo II/deficiência , Eletroforese em Gel de Campo Pulsado , Técnicas de Inativação de Genes , Mitose , Saccharomyces cerevisiae/genética
8.
Genes (Basel) ; 11(12)2020 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322845

RESUMO

Joint molecules (JMs) are intermediates of homologous recombination (HR). JMs rejoin sister or homolog chromosomes and must be removed timely to allow segregation in anaphase. Current models pinpoint Holliday junctions (HJs) as a central JM. The canonical HJ (cHJ) is a four-way DNA that needs specialized nucleases, a.k.a. resolvases, to resolve into two DNA molecules. Alternatively, a helicase-topoisomerase complex can deal with pairs of cHJs in the dissolution pathway. Aside from cHJs, HJs with a nick at the junction (nicked HJ; nHJ) can be found in vivo and are extremely good substrates for resolvases in vitro. Despite these findings, nHJs have been neglected as intermediates in HR models. Here, I present a conceptual study on the implications of nicks and nHJs in the final steps of HR. I address this from a biophysical, biochemical, topological, and genetic point of view. My conclusion is that they ease the elimination of JMs while giving genetic directionality to the final products. Additionally, I present an alternative view of the dissolution pathway since the nHJ that results from the second end capture predicts a cross-join isomerization. Finally, I propose that this isomerization nicely explains the strict crossover preference observed in synaptonemal-stabilized JMs in meiosis.


Assuntos
Quebras de DNA de Cadeia Simples , DNA Cruciforme , Recombinação Homóloga , Meiose , Mitose , Modelos Genéticos , DNA Cruciforme/genética , DNA Cruciforme/metabolismo
9.
Molecules ; 25(14)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698422

RESUMO

A library of embelin derivatives has been synthesized through a multicomponent reaction from embelin (1), aldehydes and privileged structures such as 4-hydroxycoumarin, 4-hydroxy-2H-pyran-2-one and 2-naphthol, in the presence of InCl3 as catalyst. This multicomponent reaction implies Knoevenagel condensation, Michael addition, intramolecular cyclization and dehydration. Many of the synthesized compounds were active and selective against Gram-positive bacteria, including one important multiresistant Staphylococcus aureus clinical isolate. It was found how the conjugation of diverse privileged substructure with embelin led to adducts having enhanced antibacterial activities.


Assuntos
Antibacterianos/química , Antibacterianos/síntese química , Benzoquinonas/química , Benzoquinonas/síntese química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Benzoquinonas/farmacologia , Bioensaio , Elétrons , Testes de Sensibilidade Microbiana , Eletricidade Estática
10.
Bioessays ; 42(7): e2000021, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32363600

RESUMO

It has been recently demonstrated that yeast cells are able to partially regress chromosome segregation in telophase as a response to DNA double-strand breaks (DSBs), likely to find a donor sequence for homology-directed repair (HDR). This regression challenges the traditional concept that establishes anaphase events as irreversible, hence opening a new field of research in cell biology. Here, the nature of this new behavior in yeast is summarized and the underlying mechanisms are speculated about. It is also discussed whether it can be reproduced in other eukaryotes. Overall, this work brings forwards the need of understanding how cells attempt to repair DSBs when transiting the latest stages of mitosis, i.e., anaphase and telophase.


Assuntos
Anáfase , Quebras de DNA de Cadeia Dupla , Segregação de Cromossomos , DNA , Reparo do DNA
11.
Aging (Albany NY) ; 11(23): 11686-11721, 2019 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-31812950

RESUMO

Topoisomerase II (Top2) removes topological linkages between replicated chromosomes. Top2 inhibition leads to mitotic catastrophe (MC) when cells unsuccessfully try to split their genetic material between the two daughter cells. Herein, we have characterized the fate of these daughter cells in the budding yeast. Clonogenic and microcolony experiments, in combination with vital and apoptotic stains, showed that 75% of daughter cells become senescent in the short term; they are unable to divide but remain alive. Decline in cell vitality then occurred, yet slowly, uncoordinatedly when comparing pairs of daughters, and independently of the cell death mediator Mca1/Yca1. Furthermore, we showed that senescence can be modulated by ploidy, suggesting that gross chromosome imbalances during segregation may account for this phenotype. Indeed, we found that diploid long-term survivors of the MC are prone to genomic imbalances such as trisomies, uniparental disomies and terminal loss of heterozygosity (LOH), the latter affecting the longest chromosome arms.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Saccharomyces cerevisiae/enzimologia , Sobrevivência Celular , DNA Topoisomerases Tipo II/genética , Mitose , Mutação , Saccharomyces cerevisiae/genética , Análise de Célula Única
12.
Mol Cell Oncol ; 6(5): e1648027, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31528706

RESUMO

DNA repair in late mitosis sets paradoxical scenarios. Cyclin-dependent kinase (CDK) activity is high, which favors homologous recombination (HR), despite a sister chromatid is not physically close to recombine with. We have found that DNA double-strand breaks partially revert chromosome segregation to find an intact template and repair through HR.

13.
Nat Commun ; 10(1): 3488, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375682

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Cells ; 8(8)2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357498

RESUMO

Once thought a mere ribosome factory, the nucleolus has been viewed in recent years as an extremely sensitive gauge of diverse cellular stresses. Emerging concepts in nucleolar biology include the nucleolar stress response (NSR), whereby a series of cell insults have a special impact on the nucleolus. These insults include, among others, ultra-violet radiation (UV), nutrient deprivation, hypoxia and thermal stress. While these stresses might influence nucleolar biology directly or indirectly, other perturbances whose origin resides in the nucleolar biology also trigger nucleolar and systemic stress responses. Among the latter, we find mutations in nucleolar and ribosomal proteins, ribosomal RNA (rRNA) processing inhibitors and ribosomal DNA (rDNA) transcription inhibition. The p53 protein also mediates NSR, leading ultimately to cell cycle arrest, apoptosis, senescence or differentiation. Hence, NSR is gaining importance in cancer biology. The nucleolar size and ribosome biogenesis, and how they connect with the Target of Rapamycin (TOR) signalling pathway, are also becoming important in the biology of aging and cancer. Simple model organisms like the budding yeast Saccharomyces cerevisiae, easy to manipulate genetically, are useful in order to study nucleolar and rDNA structure and their relationship with stress. In this review, we summarize the most important findings related to this topic.


Assuntos
Envelhecimento/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Conformação de Ácido Nucleico , Estresse Fisiológico/genética , Animais , Pontos de Checagem do Ciclo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Epigenômica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Leveduras/genética , Leveduras/metabolismo
15.
Nat Commun ; 10(1): 2862, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253793

RESUMO

DNA double strand breaks (DSBs) pose a high risk for genome integrity. Cells repair DSBs through homologous recombination (HR) when a sister chromatid is available. HR is upregulated by the cycling dependent kinase (CDK) despite the paradox of telophase, where CDK is high but a sister chromatid is not nearby. Here we study in the budding yeast the response to DSBs in telophase, and find they activate the DNA damage checkpoint (DDC), leading to a telophase-to-G1 delay. Outstandingly, we observe a partial reversion of sister chromatid segregation, which includes approximation of segregated material, de novo formation of anaphase bridges, and coalescence between sister loci. We finally show that DSBs promote a massive change in the dynamics of telophase microtubules (MTs), together with dephosphorylation and relocalization of kinesin-5 Cin8. We propose that chromosome segregation is not irreversible and that DSB repair using the sister chromatid is possible in telophase.


Assuntos
Cromátides/metabolismo , Segregação de Cromossomos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , DNA Fúngico/genética , Troca de Cromátide Irmã , Telófase/genética , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Recombinação Genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Genes (Basel) ; 9(11)2018 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-30453647

RESUMO

Homologous recombination (HR) is a preferred mechanism to deal with DNA replication impairments. However, HR synapsis gives rise to joint molecules (JMs) between the nascent sister chromatids, challenging chromosome segregation in anaphase. Joint molecules are resolved by the actions of several structure-selective endonucleases (SSEs), helicases and topoisomerases. Previously, we showed that yeast double mutants for the Mus81-Mms4 and Yen1 SSEs lead to anaphase bridges (ABs) after replication stress. Here, we have studied the role of the Mph1 helicase in preventing these anaphase aberrations. Mph1, the yeast ortholog of Fanconi anaemia protein M (FANCM), is involved in the removal of the D-loop, the first JM to arise in canonical HR. Surprisingly, the absence of Mph1 alone did not increase ABs; rather, it blocked cells in G2. Interestingly, in the search for genetic interactions with functionally related helicases and translocases, we found additive effects on the G2 block and post-G2 aberrations between mph1Δ and knockout mutants for Srs2, Rad54 and Rad5. Based on these interactions, we suggest that Mph1 acts coordinately with these helicases in the non-canonical HR-driven fork regression mechanism to bypass stalled replication forks.

17.
ACS Chem Biol ; 13(8): 1950-1957, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29878754

RESUMO

Naphthoquinones are among the most active natural products obtained from plants and microorganisms. Naphthoquinones exert their biological activities through pleiotropic mechanisms that include reactivity against cell nucleophiles, generation of reactive oxygen species (ROS), and inhibition of proteins. Here, we report a mechanistic antiproliferative study performed in the yeast Saccharomyces cerevisiae for several derivatives of three important natural naphthoquinones: lawsone, juglone, and ß-lapachone. We have found that (i) the free hydroxyl group of lawsone and juglone modulates toxicity; (ii) lawsone and juglone derivatives differ in their mechanisms of action, with ROS generation being more important for the former; and (iii) a subset of derivatives possess the capability to disrupt mitochondrial function, with ß-lapachones being the most potent compounds in this respect. In addition, we have cross-compared yeast results with antibacterial and antitumor activities. We discuss the relationship between the mechanistic findings, the antiproliferative activities, and the physicochemical properties of the naphthoquinones.


Assuntos
Proliferação de Células/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Naftoquinonas/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Naftoquinonas/química , Estresse Oxidativo/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
19.
Cell Cycle ; 17(2): 200-215, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29166821

RESUMO

Chromosome morphology in Saccharomyces cerevisiae is only visible at the microscopic level in the ribosomal DNA array (rDNA). The rDNA has been thus used as a model to characterize condensation and segregation of sister chromatids in mitosis. It has been established that the metaphase structure ("loop") depends, among others, on the condensin complex; whereas its segregation also depends on that complex, the Polo-like kinase Cdc5 and the cell cycle master phosphatase Cdc14. In addition, Cdc14 also drives rDNA hypercondensation in telophase. Remarkably, since all these components are essential for cell survival, their role on rDNA condensation and segregation was established by temperature-sensitive (ts) alleles. Here, we show that the heat stress (HS) used to inactivate ts alleles (25 ºC to 37 ºC shift) causes rDNA loop condensation in metaphase-arrested wild type cells, a result that can also be mimicked by other stresses that inhibit the TORC1 pathway. Because this condensation might challenge previous findings with ts alleles, we have repeated classical experiments of rDNA condensation and segregation, yet using instead auxin-driven degradation alleles (aid alleles). We have undertaken the protein degradation at lower temperatures (25 ºC) and concluded that the classical roles for condensin, Cdc5, Cdc14 and Cdc15 still prevailed. Thus, condensin degradation disrupts rDNA higher organization, Cdc14 and Cdc5 degradation precludes rDNA segregation and Cdc15 degradation still allows rDNA hypercompaction in telophase. Finally, we provide direct genetic evidence that this HS-mediated rDNA condensation is dependent on TORC1 but, unlike the one observed in anaphase, is independent of Cdc14.


Assuntos
DNA Ribossômico/química , Temperatura Alta , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Fatores de Transcrição/fisiologia , Adenosina Trifosfatases/metabolismo , Anáfase , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Ácidos Indolacéticos , Metáfase/genética , Complexos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Telófase , Fatores de Transcrição/antagonistas & inibidores
20.
Eur J Med Chem ; 141: 178-187, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29031065

RESUMO

A series of symmetric polyoxygenated dibenzofurans with 2-methylbutyril moieties at C-4 and C-6 were obtained from commercial phloroglucinol through a sequence of reactions that include monoacylation, iodination, Suzuki-Miyaura coupling, oxidative dimerization and cyclization. Some of the compounds obtained were active against Gram-positive bacteria, including multiresistant Staphylococcus aureus clinical isolates. The dibenzofuran 28 with propyl chains at C-2 and C-8 exhibited the best antibacterial activity with values comparable to those of the natural dibenzofuran achyrofuran. From the obtained results some structure-activity relationships were outlined.


Assuntos
Antibacterianos/farmacologia , Benzofuranos/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Benzofuranos/síntese química , Benzofuranos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA