Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925955

RESUMO

The FTO protein is involved in a wide range of physiological processes, including adipogenesis and osteogenesis. This two-domain protein belongs to the AlkB family of 2-oxoglutarate (2-OG)- and Fe(II)-dependent dioxygenases, displaying N6-methyladenosine (N6-meA) demethylase activity. The aim of the study was to characterize the relationships between the structure and activity of FTO. The effect of cofactors (Fe2+/Mn2+ and 2-OG), Ca2+ that do not bind at the catalytic site, and protein concentration on FTO properties expressed in either E. coli (ECFTO) or baculovirus (BESFTO) system were determined using biophysical methods (DSF, MST, SAXS) and biochemical techniques (size-exclusion chromatography, enzymatic assay). We found that BESFTO carries three phosphoserines (S184, S256, S260), while there were no such modifications in ECFTO. The S256D mutation mimicking the S256 phosphorylation moderately decreased FTO catalytic activity. In the presence of Ca2+, a slight stabilization of the FTO structure was observed, accompanied by a decrease in catalytic activity. Size exclusion chromatography and MST data confirmed the ability of FTO from both expression systems to form homodimers. The MST-determined dissociation constant of the FTO homodimer was consistent with their in vivo formation in human cells. Finally, a low-resolution structure of the FTO homodimer was built based on SAXS data.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/fisiologia , Catálise , Domínio Catalítico , Dioxigenases/genética , Humanos , Ácidos Cetoglutáricos/metabolismo , Processamento de Proteína Pós-Traducional/genética , RNA Mensageiro/genética , Espalhamento a Baixo Ângulo , Relação Estrutura-Atividade , Difração de Raios X/métodos
2.
Sci Bull (Beijing) ; 66(6): 592-602, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36654429

RESUMO

Phytochrome-dependent light signaling has been studied in several fungi. In Aspergillus nidulans light-stimulated phytochrome activates the high-osmolarity glycerol (HOG) signaling pathway and thereby controls the expression of a large number of genes, many of which are related to stress responses. In a genome-wide expression analysis in A. nidulans we found that phytochrome, fphA, is under strict expression control of the central regulator of the sulfur-starvation response, MetR. This transcriptional regulator is required for the expression of genes involved in inorganic sulfur assimilation. In the presence of organic sulfur, MetR is probably ubiquitinated and possibly degraded and the transcription of sulfur-assimilation genes, e.g., sulfate permease, is turned off. The expression analysis described here revealed, however, that MetR additionally controls the expression of hundreds of genes, many of which are required for secondary metabolite production. We also show that metR mutation phenocopies fphA deletion, and five other histidine-hybrid kinases are down-regulated in the metR1 mutant. Furthermore, we found that light and phytochrome regulate the expression of at least three carbon-sulfur hydrolases. This work is a further step towards understanding the interplay between light sensing and metabolic pathways.

3.
IUBMB Life ; 72(6): 1250-1261, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32364671

RESUMO

A series of halogenated derivatives of natural flavonoids: baicalein and chrysin were designed and investigated as possible ligands for the catalytic subunit of tumor-associated human kinase CK2. Thermal shift assay method, in silico modeling, and high-performance liquid chromatography-derived hydrophobicity together with IC50 values determined in biochemical assay were used to explain the ligand affinity to the catalytic subunit of human protein kinase CK2. Obtained results revealed that substitution of baicalein and chrysin with halogen atom increases their binding affinity to hCK2α, and for 8-chlorochrysin the observed effect is even stronger than for the reference CK2 inhibitor-4,5,6,7-tetrabromo-1H-benzotriazole. The cytotoxic activities of the baicalein and chrysin derivatives in the in vitro model have been evaluated for MV4-11 (human biphenotypic B myelomonocytic leukemia), A549 (human lung adenocarcinoma), LoVo (human colon cancer), and MCF-7 (human breast cancer) as well as on the nontumorigenic human breast epithelial MCF-10A cell lines. Among the baicalein derivatives, the strongest cytotoxic effect was observed for 8-bromobaicalein, which exhibited the highest activity against breast cancer cell line MCF-7 (IC50 10 ± 3 µM). In the chrysin series, the strongest cytotoxic effect was observed for unsubstituted chrysin, which exhibited the highest activity against leukemic cell line MV4-11 (IC50 10 ± 4 µM).


Assuntos
Caseína Quinase II/antagonistas & inibidores , Flavanonas/química , Flavonoides/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Flavanonas/metabolismo , Flavanonas/farmacologia , Flavonoides/metabolismo , Flavonoides/farmacologia , Halogenação , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Inibidores de Proteínas Quinases/metabolismo , Relação Estrutura-Atividade
4.
IUBMB Life ; 72(6): 1211-1219, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32162783

RESUMO

A series of chlorine-substituted benzotriazole derivatives, representing all possible substitution patterns of halogen atoms attached to the benzotriazole benzene ring, were synthetized as potential inhibitors of human protein kinase CK2. Basic ADME parameters for the free solutes (hydrophobicity, electronic properties) together with their binding affinity to the catalytic subunit of protein kinase CK2 were determined with reverse-phase HPLC, spectrophotometric titration, and Thermal Shift Assay Method, respectively. The analysis of position-dependent thermodynamic contribution of a chlorine atom attached to the benzotriazole ring confirmed the previous observation for brominated benzotriazoles, in which substitution at positions 5 and 6 with bromine was found crucial for ligand binding. In all tested halogenated benzotriazoles the replacement of Br with Cl decreases the hydrophobicity, while the electronic properties remain virtually unaffected. Supramolecular architecture identified in the just resolved crystal structures of three of the four possible dichloro-benzotriazoles shows how substitution distant from the triazole ring affects the pattern of intermolecular interactions. Summarizing, the benzotriazole benzene ring substitution pattern has been identified as the main driver of ligand binding, predominating the non-specific hydrophobic effect.


Assuntos
Caseína Quinase II/metabolismo , Triazóis/química , Triazóis/metabolismo , Caseína Quinase II/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Hidrocarbonetos Halogenados/síntese química , Hidrocarbonetos Halogenados/química , Hidrocarbonetos Halogenados/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Eletricidade Estática , Relação Estrutura-Atividade , Triazóis/síntese química
5.
Biochem J ; 474(11): 1837-1852, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28408432

RESUMO

1,N6-α-hydroxypropanoadenine (HPA) is an exocyclic DNA adduct of acrolein - an environmental pollutant and endocellular oxidative stress product. Escherichia coli AlkB dioxygenase belongs to the superfamily of α-ketoglutarate (αKG)- and iron-dependent dioxygenases which remove alkyl lesions from bases via an oxidative mechanism, thereby restoring native DNA structure. Here, we provide in vivo and in vitro evidence that HPA is mutagenic and is effectively repaired by AlkB dioxygenase. HPA generated in plasmid DNA caused A → C and A → T transversions and, less frequently, A → G transitions. The lesion was efficiently repaired by purified AlkB protein; the optimal pH, Fe(II), and αKG concentrations for this reaction were determined. In vitro kinetic data show that the protonated form of HPA is preferentially repaired by AlkB, albeit the reaction is stereoselective. Moreover, the number of reaction cycles carried out by an AlkB molecule remains limited. Molecular modeling of the T(HPA)T/AlkB complex demonstrated that the R stereoisomer in the equatorial conformation of the HPA hydroxyl group is strongly preferred, while the S stereoisomer seems to be susceptible to AlkB-directed oxidative hydroxylation only when HPA adopts the syn conformation around the glycosidic bond. In addition to the biochemical activity assays, substrate binding to the protein was monitored by differential scanning fluorimetry allowing identification of the active protein form, with cofactor and cosubstrate bound, and monitoring of substrate binding. In contrast FTO, a human AlkB homolog, failed to bind an ssDNA trimer carrying HPA.


Assuntos
Adenina/análogos & derivados , Enzimas AlkB/metabolismo , Carcinógenos Ambientais/metabolismo , Adutos de DNA/metabolismo , Reparo do DNA , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutagênicos/metabolismo , Adenina/química , Adenina/metabolismo , Adenina/toxicidade , Enzimas AlkB/química , Enzimas AlkB/genética , Sítios de Ligação , Biocatálise , Carcinógenos Ambientais/química , Carcinógenos Ambientais/toxicidade , Adutos de DNA/química , Adutos de DNA/toxicidade , DNA Bacteriano/química , DNA Bacteriano/efeitos dos fármacos , DNA Bacteriano/metabolismo , Estabilidade Enzimática , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidroxilação , Conformação Molecular , Simulação de Dinâmica Molecular , Mutagênese/efeitos dos fármacos , Mutagênicos/química , Mutagênicos/toxicidade , Oxirredução , Conformação Proteica , Teoria Quântica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidade por Substrato
6.
Mutat Res ; 778: 52-60, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26114961

RESUMO

An Escherichia coli hemH mutant accumulates protoporphyrin IX, causing photosensitivity of cells to visible light. Here, we have shown that intracellular free iron in hemH mutants is double that observed in hemH(+) strain. The aim of this study was to recognize the influence of this increased free iron concentration on AlkB-directed repair of alkylated DNA by analyzing survival and argE3 → Arg(+) reversion induction after λ>320 nm light irradiation and MMS-treatment in E. coli AB1157 hemH and alkB mutants. E.coli AlkB dioxygenase constitutes a direct single-protein repair system using non-hem Fe(II) and cofactors 2-oxoglutarate (2OG) and oxygen (O2) to initiate oxidative dealkylation of DNA/RNA bases. We have established that the frequency of MMS-induced Arg(+) revertants in AB1157 alkB(+)hemH(-)/pMW1 strain was 40 and 26% reduced comparing to the alkB(+)hemH(-) and alkB(+)hemH(+)/pMW1, respectively. It is noteworthy that the effect was observed only when bacteria were irradiated with λ>320 nm light prior MMS-treatment. This finding indicates efficient repair of alkylated DNA in photosensibilized cells in the presence of higher free iron pool and AlkB concentrations. Interestingly, a 31% decrease in the level of Arg(+) reversion was observed in irradiated and MMS-treated hemH(-)alkB(-) cells comparing to the hemH(+)alkB(-) strain. Also, the level of Arg(+) revertants in the irradiated and MMS treated hemH(-) alkB(-) mutant was significantly lower (by 34%) in comparison to the same strain but MMS-treated only. These indicate AlkB-independent repair involving Fe ions and reactive oxygen species. According to our hypothesis it may be caused by non-enzymatic dealkylation of alkylated dNTPs in E. coli cells. In in vitro studies, the absence of AlkB protein in the presence of iron ions allowed etheno(ϵ) dATP and ϵdCTP to spontaneously convert to dAMP and dCMP, respectively. Thus, hemH(-) intra-cellular conditions may favor Fe-dependent dealkylation of modified dNTPs.


Assuntos
Alquilantes/farmacologia , Reparo do DNA , Proteínas de Escherichia coli/fisiologia , Escherichia coli/efeitos dos fármacos , Ferro/fisiologia , Oxigenases de Função Mista/fisiologia , DNA Bacteriano/efeitos dos fármacos , DNA Bacteriano/efeitos da radiação , Farmacorresistência Bacteriana , Escherichia coli/metabolismo , Ferroquelatase/genética , Ferroquelatase/fisiologia , Concentração de Íons de Hidrogênio , Líquido Intracelular/metabolismo , Luz , Metanossulfonato de Metila/farmacologia , Modelos Moleculares , Fotoquímica , Protoporfirinas/metabolismo , Espécies Reativas de Oxigênio
7.
PLoS One ; 9(6): e98729, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24914785

RESUMO

The ALKBH family of Fe(II) and 2-oxoglutarate dependent oxygenases comprises enzymes that display sequence homology to AlkB from E. coli, a DNA repair enzyme that uses an oxidative mechanism to dealkylate methyl and etheno adducts on the nucleobases. Humans have nine different ALKBH proteins, ALKBH1-8 and FTO. Mammalian and plant ALKBH8 are tRNA hydroxylases targeting 5-methoxycarbonylmethyl-modified uridine (mcm5U) at the wobble position of tRNAGly(UCC). In contrast, the genomes of some bacteria encode a protein with strong sequence homology to ALKBH8, and robust DNA repair activity was previously demonstrated for one such protein. To further explore this apparent functional duality of the ALKBH8 proteins, we have here enzymatically characterized a panel of such proteins, originating from bacteria, protozoa and mimivirus. All the enzymes showed DNA repair activity in vitro, but, interestingly, two protozoan ALKBH8s also catalyzed wobble uridine modification of tRNA, thus displaying a dual in vitro activity. Also, we found the modification status of tRNAGly(UCC) to be unaltered in an ALKBH8 deficient mutant of Agrobacterium tumefaciens, indicating that bacterial ALKBH8s have a function different from that of their eukaryotic counterparts. The present study provides new insights on the function and evolution of the ALKBH8 family of proteins.


Assuntos
Reparo do DNA , Dioxigenases/metabolismo , Proteínas de Protozoários/metabolismo , RNA de Transferência/metabolismo , tRNA Metiltransferases/metabolismo , Agrobacterium tumefaciens/enzimologia , Agrobacterium tumefaciens/genética , Sequência de Aminoácidos , Biologia Computacional , Dano ao DNA , Metilação de DNA , Dioxigenases/química , Dioxigenases/genética , Ativação Enzimática , Humanos , Dados de Sequência Molecular , Mutação , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , tRNA Metiltransferases/química , tRNA Metiltransferases/genética
8.
PLoS One ; 8(10): e76198, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098441

RESUMO

Alkylating agents introduce cytotoxic and/or mutagenic lesions to DNA bases leading to induction of adaptive (Ada) response, a mechanism protecting cells against deleterious effects of environmental chemicals. In Escherichia coli, the Ada response involves expression of four genes: ada, alkA, alkB, and aidB. In Pseudomonas putida, the organization of Ada regulon is different, raising questions regarding regulation of Ada gene expression. The aim of the presented studies was to analyze the role of AlkA glycosylase and AlkB dioxygenase in protecting P. putida cells against damage to DNA caused by alkylating agents. The results of bioinformatic analysis, of survival and mutagenesis of methyl methanesulfonate (MMS) or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treated P. putida mutants in ada, alkA and alkB genes as well as assay of promoter activity revealed diverse roles of Ada, AlkA and AlkB proteins in protecting cellular DNA against alkylating agents. We found AlkA protein crucial to abolish the cytotoxic but not the mutagenic effects of alkylans since: (i) the mutation in the alkA gene was the most deleterious for MMS/MNNG treated P. putida cells, (ii) the activity of the alkA promoter was Ada-dependent and the highest among the tested genes. P. putida AlkB (PpAlkB), characterized by optimal conditions for in vitro repair of specific substrates, complementation assay, and M13/MS2 survival test, allowed to establish conservation of enzymatic function of P. putida and E. coli AlkB protein. We found that the organization of P. putida Ada regulon differs from that of E. coli. AlkA protein induced within the Ada response is crucial for protecting P. putida against cytotoxicity, whereas Ada prevents the mutagenic action of alkylating agents. In contrast to E. coli AlkB (EcAlkB), PpAlkB remains beyond the Ada regulon and is expressed constitutively. It probably creates a backup system that protects P. putida strains defective in other DNA repair systems against alkylating agents of exo- and endogenous origin.


Assuntos
Proteínas de Bactérias/metabolismo , Dano ao DNA/genética , DNA Glicosilases/metabolismo , Reparo do DNA/genética , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Alquilantes/farmacologia , Alquilação , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Análise por Conglomerados , Sequência Consenso , DNA Glicosilases/química , DNA Glicosilases/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Dados de Sequência Molecular , Mutagênese/efeitos dos fármacos , Mutagênese/genética , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Pseudomonas putida/efeitos dos fármacos , Alinhamento de Sequência , Especificidade por Substrato
9.
J Biol Chem ; 288(1): 432-41, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23148216

RESUMO

Efficient repair by Escherichia coli AlkB dioxygenase of exocyclic DNA adducts 3,N(4)-ethenocytosine, 1,N(6)-ethenoadenine, 3,N(4)-α-hydroxyethanocytosine, and reported here for the first time 3,N(4)-α-hydroxypropanocytosine requires higher Fe(II) concentration than the reference 3-methylcytosine. The pH optimum for the repair follows the order of pK(a) values for protonation of the adduct, suggesting that positively charged substrates favorably interact with the negatively charged carboxylic group of Asp-135 side chain in the enzyme active center. This interaction is supported by molecular modeling, indicating that 1,N(6)-ethenoadenine and 3,N(4)-ethenocytosine are bound to AlkB more favorably in their protonated cationic forms. An analysis of the pattern of intermolecular interactions that stabilize the location of the ligand points to a role of Asp-135 in recognition of the adduct in its protonated form. Moreover, ab initio calculations also underline the role of substrate protonation in lowering the free energy barrier of the transition state of epoxidation of the etheno adducts studied. The observed time courses of repair of mixtures of stereoisomers of 3,N(4)-α-hydroxyethanocytosine or 3,N(4)-α-hydroxypropanocytosine are unequivocally two-exponential curves, indicating that the respective isomers are repaired by AlkB with different efficiencies. Molecular modeling of these adducts bound by AlkB allowed evaluation of the participation of their possible conformational states in the enzymatic reaction.


Assuntos
Proteínas de Escherichia coli/fisiologia , Oxigenases de Função Mista/fisiologia , Domínio Catalítico , DNA/química , Adutos de DNA/química , Reparo do DNA , Relação Dose-Resposta a Droga , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Ligantes , Peroxidação de Lipídeos , Oxigenases de Função Mista/química , Modelos Químicos , Conformação Molecular , Estresse Oxidativo , Ligação Proteica , Prótons , Estereoisomerismo
10.
Mutagenesis ; 26(3): 401-6, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21193516

RESUMO

Etheno (ε) DNA adducts, including 1,N(6)-ethenoadenine (εA), are formed by various bifunctional agents of exogenous and endogenous origin. The AT→TA transversion, the most frequent mutation provoked by the presence of εA in DNA, is very common in critical codons of the TP53 and RAS genes in tumours induced by exposure to carcinogenic vinyl compounds. Here, using a method that allows examination of the mutagenic potency of a metabolite of vinyl chloride, chloroacetaldehyde (CAA), but eliminates its cytotoxicity, we studied the participation of alkA, alkB and mug gene products in the repair of εA in Escherichia coli cells. The test system used comprised the pIF105 plasmid bearing the lactose operon of CC105 origin, which allowed monitoring of Lac(+) revertants that arose by AT→TA substitutions due to the modification of adenine by CAA. The plasmid was CAA-modified in vitro and replicated in E.coli of various genetic backgrounds (wt, alkA, alkB, mug, alkAalkB, alkAmug and alkBmug). To modify the levels of the AlkA and AlkB proteins, mutagenesis was studied in E.coli cells induced or not in adaptive response to alkylating agents. Considering the levels of CAA-induced Lac(+) revertants in strains harbouring the CAA-modified pIF105 plasmid and induced or not in adaptive response, we conclude that the AlkB dioxygenase plays a major role in decreasing the level of AT→TA mutations, thus in the repair of εA in E.coli cells. The observed differences of mutation frequencies in the various mutant strains assayed indicate that Mug glycosylase is also engaged in the repair of εA, whereas the role the AlkA glycosylase in this repair is negligible.


Assuntos
Acetaldeído/análogos & derivados , Adenina/análogos & derivados , Adutos de DNA/genética , Reparo do DNA/genética , Proteínas de Escherichia coli/metabolismo , Oxigenases de Função Mista/metabolismo , Timina DNA Glicosilase/metabolismo , Acetaldeído/metabolismo , Acetaldeído/toxicidade , Adenina/química , Adenina/metabolismo , Ensaio de Unidades Formadoras de Colônias , Adutos de DNA/química , Adutos de DNA/metabolismo , DNA Glicosilases/genética , Eletroporação , Escherichia coli , Proteínas de Escherichia coli/genética , Oxigenases de Função Mista/genética , Estrutura Molecular , Mutagênese , Plasmídeos/genética , Estatísticas não Paramétricas , Timina DNA Glicosilase/genética
11.
Mutat Res ; 684(1-2): 24-34, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-19941873

RESUMO

Etheno (epsilon) adducts are formed in reaction of DNA bases with various environmental carcinogens and endogenously created products of lipid peroxidation. Chloroacetaldehyde (CAA), a metabolite of carcinogen vinyl chloride, is routinely used to generate epsilon-adducts. We studied the role of AlkB, along with AlkA and Mug proteins, all engaged in repair of epsilon-adducts, in CAA-induced mutagenesis. The test system used involved pIF102 and pIF104 plasmids bearing the lactose operon of CC102 or CC104 origin (Cupples and Miller (1989) [17]) which allowed to monitor Lac(+) revertants, the latter arose by GC-->AT or GC-->TA substitutions, respectively, as a result of modification of guanine and cytosine. The plasmids were CAA-damaged in vitro and replicated in Escherichia coli of various genetic backgrounds. To modify the levels of AlkA and AlkB proteins, mutagenesis was studied in E. coli cells induced or not in adaptive response. Formation of varepsilonC proceeds via a relatively stable intermediate, 3,N(4)-alpha-hydroxyethanocytosine (HEC), which allowed to compare repair of both adducts. The results indicate that all three genes, alkA, alkB and microg, are engaged in alleviation of CAA-induced mutagenesis. The frequency of mutation was higher in AlkA-, AlkB- and Mug-deficient strains in comparison to alkA(+), alkB(+), and microg(+) controls. Considering the levels of CAA-induced Lac(+) revertants in strains harboring the pIF plasmids and induced or not in adaptive response, we conclude that AlkB protein is engaged in the repair of epsilonC and HEC in vivo. Using the modified TTCTT 5-mers as substrates, we confirmed in vitro that AlkB protein repairs epsilonC and HEC although far less efficiently than the reference adduct 3-methylcytosine. The pH optimum for repair of HEC and epsilonC is significantly different from that for 3-methylcytosine. We propose that the protonated form of adduct interact in active site of AlkB protein.


Assuntos
Acetaldeído/análogos & derivados , Citosina/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Oxigenases de Função Mista/metabolismo , Mutagênicos/toxicidade , Acetaldeído/toxicidade , Citosina/metabolismo , Reparo do DNA , Escherichia coli/genética , Mutagênese , Testes de Mutagenicidade , Transformação Bacteriana
12.
Biochem J ; 369(Pt 3): 611-8, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12387728

RESUMO

Assuming that the efficiency of the incorporation of 5-methyl-2'-deoxyisocytosine-5' triphosphate (dMiCTP) and dTTP opposite isoguanine (iG) is a measure of the proportion of the keto and enol tautomers of iG in the Thermus aquaticus DNA polymerase active centre, we studied the influence of temperature and iG-neighbouring bases in the template on base-pairing of iG. On the basis of experiments with four sequences (3'-TXT-5', 3'-GXG-5', 3'-CXC-5', 3'-CXT-5', where X=iG) at 37, 50, 65 and 80 degrees C, we found that 3'-neighbours decrease the fraction of the keto tautomer in the order C>G>or=T, whereas temperature apparently does not influence the tautomeric equilibrium of iG. The variability of the ratio of incorporation of dMiCTP versus dTTP (5-20) primarily reflects the variability of K (m) values, since V (max) values are roughly similar, which indicates that the iG.MiC and iG.T pairs fit the polymerase active centre equally well. The altering of the base-pairing of iG by sequence context is discussed in relation to tautomerism and miscoding of this oxidized adenine derivative. A key derivative for preparation oligodeoxynucleotides, O (2)-diphenylcarbamoyl- N (6)-[(dimethylamino)ethylidene]-2'-deoxyisoguanosine, is extremely labile (t (1/2)=3.5 min) in 3% trichloroacetic acid/dichloromethane, i.e. under the conditions of automated DNA synthesis, which results in low yield and length heterogeneity of templates.


Assuntos
Pareamento de Bases , Guanina/química , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Taq Polimerase/metabolismo , Sítios de Ligação , Citidina Trifosfato/análogos & derivados , Citidina Trifosfato/química , Citidina Trifosfato/metabolismo , Temperatura , Moldes Genéticos , Nucleotídeos de Timina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA