Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Biotechnol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134754

RESUMO

CRISPR-Cas9-mediated homology-directed repair (HDR) can introduce desired mutations at targeted genomic sites, but achieving high efficiencies is a major hurdle in many cell types, including cells deficient in DNA repair activity. In this study, we used genome-wide screening in Fanconi anemia patient lymphoblastic cell lines to uncover suppressors of CRISPR-Cas9-mediated HDR. We found that a single exonuclease, TREX1, reduces HDR efficiency when the repair template is a single-stranded or linearized double-stranded DNA. TREX1 expression serves as a biomarker for CRISPR-Cas9-mediated HDR in that the high TREX1 expression present in many different cell types (such as U2OS, Jurkat, MDA-MB-231 and primary T cells as well as hematopoietic stem and progenitor cells) predicts poor HDR. Here we demonstrate rescue of HDR efficiency (ranging from two-fold to eight-fold improvement) either by TREX1 knockout or by the use of single-stranded DNA templates chemically protected from TREX1 activity. Our data explain why some cell types are easier to edit than others and indicate routes for increasing CRISPR-Cas9-mediated HDR in TREX1-expressing contexts.

2.
Science ; 385(6712): eadj8691, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39208110

RESUMO

Chromosome-containing micronuclei are a hallmark of aggressive cancers. Micronuclei frequently undergo irreversible collapse, exposing their enclosed chromatin to the cytosol. Micronuclear rupture catalyzes chromosomal rearrangements, epigenetic abnormalities, and inflammation, yet mechanisms safeguarding micronuclear integrity are poorly understood. In this study, we found that mitochondria-derived reactive oxygen species (ROS) disrupt micronuclei by promoting a noncanonical function of charged multivesicular body protein 7 (CHMP7), a scaffolding protein for the membrane repair complex known as endosomal sorting complex required for transport III (ESCRT-III). ROS retained CHMP7 in micronuclei while disrupting its interaction with other ESCRT-III components. ROS-induced cysteine oxidation stimulated CHMP7 oligomerization and binding to the nuclear membrane protein LEMD2, disrupting micronuclear envelopes. Furthermore, this ROS-CHMP7 pathological axis engendered chromosome shattering known to result from micronuclear rupture. It also mediated micronuclear disintegrity under hypoxic conditions, linking tumor hypoxia with downstream processes driving cancer progression.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Proteínas de Membrana , Micronúcleos com Defeito Cromossômico , Neoplasias , Proteínas Nucleares , Estresse Oxidativo , Humanos , Hipóxia Celular , Cromatina/metabolismo , Cisteína/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Células HeLa
3.
Hum Mol Genet ; 33(18): 1555-1566, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38796715

RESUMO

The cGAS-STING pathway detects cytosolic DNA and activates a signaling cascade that results in a type I interferon (IFN) response. The endoplasmic reticulum (ER)-associated exonuclease TREX1 suppresses cGAS-STING by eliminating DNA from the cytosol. Mutations that compromise TREX1 function are linked to autoinflammatory disorders, including systemic lupus erythematosus (SLE) and Aicardi-Goutières syndrome (AGS). Despite key roles in regulating cGAS-STING and suppressing excessive inflammation, the impact of many disease-associated TREX1 mutations-particularly those outside of the core catalytic domains-remains poorly understood. Here, we characterize a recessive AGS-linked TREX1 P61Q mutation occurring within the poorly characterized polyproline helix (PPII) motif. In keeping with its position outside of the catalytic core or ER targeting motifs, neither the P61Q mutation, nor aggregate proline-to-alanine PPII mutation, disrupts TREX1 exonuclease activity, subcellular localization, or cGAS-STING regulation in overexpression systems. Introducing targeted mutations into the endogenous TREX1 locus revealed that PPII mutations destabilize the protein, resulting in impaired exonuclease activity and unrestrained cGAS-STING activation. Overall, these results demonstrate that TREX1 PPII mutations, including P61Q, impair proper immune regulation and lead to autoimmune disease through TREX1 destabilization.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Exodesoxirribonucleases , Proteínas de Membrana , Mutação , Malformações do Sistema Nervoso , Nucleotidiltransferases , Fosfoproteínas , Humanos , Motivos de Aminoácidos , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Células HEK293 , Lúpus Eritematoso Sistêmico/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Malformações do Sistema Nervoso/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transdução de Sinais/genética
5.
Mol Cell ; 84(5): 819-821, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458172

RESUMO

In a recent issue of Cell, Leuzzi et al.1 report the identification of the DNA translocase SMARCAL1 as a novel factor that dampens immune responses against tumor cells through two distinct mechanisms.


Assuntos
Neoplasias , DNA , Neoplasias/imunologia
6.
Methods Cell Biol ; 182: 313-327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359985

RESUMO

The APOBEC3 family of cytosine deaminases, which target single-stranded DNA and RNA of viruses and retroelements as part of the innate immune defense, generate mutations in many human cancers. Although the APOBEC3A paralog is a major endogenous source of these mutations, low APOBEC3A mRNA levels and protein abundance have hampered functional characterization. Extensive homology across APOBEC3 paralogs have further challenged the development of specific detection reagents. Here, we describe the isolation and use of monoclonal antibodies with specificity for APOBEC3A and the APOBEC3A/APOBEC3B/APOBEC3G proteins. We provide protocols and technical advice for detection and measurement of APOBEC3A protein across human cancer cell lines using standard immunoblotting and immunofluorescence protocols.


Assuntos
Neoplasias , Proteínas , Humanos , Proteínas/genética , Neoplasias/genética , Linhagem Celular , Mutação , Citidina Desaminase/genética , Antígenos de Histocompatibilidade Menor/genética
7.
Cancer Immunol Res ; 12(6): 673-686, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38408184

RESUMO

Chromosomal instability is a hallmark of human cancer that is associated with aggressive disease characteristics. Chromosome mis-segregations help fuel natural selection, but they risk provoking a cGAS-STING immune response through the accumulation of cytosolic DNA. The mechanisms of how tumors benefit from chromosomal instability while mitigating associated risks, such as enhanced immune surveillance, are poorly understood. Here, we identify cGAS-STING-dependent upregulation of the nuclease TREX1 as an adaptive, negative feedback mechanism that promotes immune evasion through digestion of cytosolic DNA. TREX1 loss diminishes tumor growth, prolongs survival of host animals, increases tumor immune infiltration, and potentiates response to immune checkpoint blockade selectively in tumors capable of mounting a type I IFN response downstream of STING. Together, these data demonstrate that TREX1 induction shields chromosomally unstable tumors from immune surveillance by dampening type I IFN production and suggest that TREX1 inhibitors might be used to selectively target tumors that have retained the inherent ability to mount an IFN response downstream of STING. See related article by Lim et al., p. 663.


Assuntos
Exodesoxirribonucleases , Interferon Tipo I , Fosfoproteínas , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Interferon Tipo I/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Animais , Humanos , Camundongos , Neoplasias/imunologia , Neoplasias/genética , Evasão da Resposta Imune , Linhagem Celular Tumoral , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Evasão Tumoral
8.
bioRxiv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38260344

RESUMO

The cGAS-STING pathway detects cytosolic DNA and activates a signaling cascade that results in a type I interferon (IFN) response. The endoplasmic reticulum (ER)-associated exonuclease TREX1 suppresses cGAS-STING by eliminating DNA from the cytosol. Mutations that compromise TREX1 function are linked to autoinflammatory disorders, including systemic lupus erythematosus (SLE) and Aicardi-Goutières syndrome (AGS). Despite key roles in regulating cGAS-STING and suppressing excessive inflammation, the impact of many disease-associated TREX1 mutations - particularly those outside of the core catalytic domains - remains poorly understood. Here, we characterize a recessive AGS-linked TREX1 P61Q mutation occurring within the poorly characterized polyproline helix (PPII) motif. In keeping with its position outside of the catalytic core or ER targeting motifs, neither the P61Q mutation, nor aggregate proline-to-alanine PPII mutation, disrupt TREX1 exonuclease activity, subcellular localization, or cGAS-STING regulation in overexpression systems. Introducing targeted mutations into the endogenous TREX1 locus revealed that PPII mutations destabilize the protein, resulting in impaired exonuclease activity and unrestrained cGAS-STING activation. Overall, these results demonstrate that TREX1 PPII mutations, including P61Q, impair proper immune regulation and lead to autoimmune disease through TREX1 destabilization.

9.
NAR Cancer ; 5(4): zcad058, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38155930

RESUMO

Apolipoprotein B messenger RNA (mRNA) editing enzyme, catalytic polypeptide-like (APOBEC) cytidine deaminases cause genetic instability during cancer development. Elevated APOBEC3A (A3A) levels result in APOBEC signature mutations; however, mechanisms regulating A3A abundance in breast cancer are unknown. Here, we show that dysregulating the ubiquitin-proteasome system with proteasome inhibitors, including Food and Drug Administration-approved anticancer drugs, increased A3A abundance in breast cancer and multiple myeloma cell lines. Unexpectedly, elevated A3A occurs via an ∼100-fold increase in A3A mRNA levels, indicating that proteasome inhibition triggers a transcriptional response as opposed to or in addition to blocking A3A degradation. This transcriptional regulation is mediated in part through FBXO22, a protein that functions in SKP1-cullin-F-box ubiquitin ligase complexes and becomes dysregulated during carcinogenesis. Proteasome inhibitors increased cellular cytidine deaminase activity, decreased cellular proliferation and increased genomic DNA damage in an A3A-dependent manner. Our findings suggest that proteasome dysfunction, either acquired during cancer development or induced therapeutically, could increase A3A-induced genetic heterogeneity and thereby influence therapeutic responses in patients.

10.
Nature ; 619(7968): 176-183, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37286593

RESUMO

Chromosomal instability (CIN) and epigenetic alterations are characteristics of advanced and metastatic cancers1-4, but whether they are mechanistically linked is unknown. Here we show that missegregation of mitotic chromosomes, their sequestration in micronuclei5,6 and subsequent rupture of the micronuclear envelope7 profoundly disrupt normal histone post-translational modifications (PTMs), a phenomenon conserved across humans and mice, as well as in cancer and non-transformed cells. Some of the changes in histone PTMs occur because of the rupture of the micronuclear envelope, whereas others are inherited from mitotic abnormalities before the micronucleus is formed. Using orthogonal approaches, we demonstrate that micronuclei exhibit extensive differences in chromatin accessibility, with a strong positional bias between promoters and distal or intergenic regions, in line with observed redistributions of histone PTMs. Inducing CIN causes widespread epigenetic dysregulation, and chromosomes that transit in micronuclei experience heritable abnormalities in their accessibility long after they have been reincorporated into the primary nucleus. Thus, as well as altering genomic copy number, CIN promotes epigenetic reprogramming and heterogeneity in cancer.


Assuntos
Instabilidade Cromossômica , Segregação de Cromossomos , Cromossomos , Epigênese Genética , Micronúcleos com Defeito Cromossômico , Neoplasias , Animais , Humanos , Camundongos , Cromatina/genética , Instabilidade Cromossômica/genética , Cromossomos/genética , Cromossomos/metabolismo , Histonas/química , Histonas/metabolismo , Neoplasias/genética , Neoplasias/patologia , Mitose , Variações do Número de Cópias de DNA , Processamento de Proteína Pós-Traducional
11.
Nat Genet ; 54(11): 1599-1608, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36280735

RESUMO

Mutational signatures associated with apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC)3 cytosine deaminase activity have been found in over half of cancer types, including some therapy-resistant and metastatic tumors. Driver mutations can occur in APOBEC3-favored sequence contexts, suggesting that mutagenesis by APOBEC3 enzymes may drive cancer evolution. The APOBEC3-mediated signatures are often detected in subclonal branches of tumor phylogenies and are acquired in cancer cell lines over long periods of time, indicating that APOBEC3 mutagenesis can be ongoing in cancer. Collectively, these and other observations have led to the proposal that APOBEC3 mutagenesis represents a disease-modifying process that could be inhibited to limit tumor heterogeneity, metastasis and drug resistance. However, critical aspects of APOBEC3 biology in cancer and in healthy tissues have not been clearly defined, limiting well-grounded predictions regarding the benefits of inhibiting APOBEC3 mutagenesis in different settings in cancer. We discuss the relevant mechanistic gaps and strategies to address them to investigate whether inhibiting APOBEC3 mutagenesis may confer clinical benefits in cancer.


Assuntos
Neoplasias , Humanos , Mutagênese/genética , Neoplasias/genética , Neoplasias/patologia , Desaminase APOBEC-1/genética , Mutação , Citidina Desaminase/genética , Desaminases APOBEC/genética
12.
Nature ; 607(7920): 799-807, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859169

RESUMO

The APOBEC3 family of cytosine deaminases has been implicated in some of the most prevalent mutational signatures in cancer1-3. However, a causal link between endogenous APOBEC3 enzymes and mutational signatures in human cancer genomes has not been established, leaving the mechanisms of APOBEC3 mutagenesis poorly understood. Here, to investigate the mechanisms of APOBEC3 mutagenesis, we deleted implicated genes from human cancer cell lines that naturally generate APOBEC3-associated mutational signatures over time4. Analysis of non-clustered and clustered signatures across whole-genome sequences from 251 breast, bladder and lymphoma cancer cell line clones revealed that APOBEC3A deletion diminished APOBEC3-associated mutational signatures. Deletion of both APOBEC3A and APOBEC3B further decreased APOBEC3 mutation burdens, without eliminating them. Deletion of APOBEC3B increased APOBEC3A protein levels, activity and APOBEC3A-mediated mutagenesis in some cell lines. The uracil glycosylase UNG was required for APOBEC3-mediated transversions, whereas the loss of the translesion polymerase REV1 decreased overall mutation burdens. Together, these data represent direct evidence that endogenous APOBEC3 deaminases generate prevalent mutational signatures in human cancer cells. Our results identify APOBEC3A as the main driver of these mutations, indicate that APOBEC3B can restrain APOBEC3A-dependent mutagenesis while contributing its own smaller mutation burdens and dissect mechanisms that translate APOBEC3 activities into distinct mutational signatures.


Assuntos
Desaminases APOBEC , Mutagênese , Neoplasias , Desaminases APOBEC/deficiência , Desaminases APOBEC/genética , Desaminases APOBEC/metabolismo , Linhagem Celular Tumoral , DNA Polimerase Dirigida por DNA/metabolismo , Deleção de Genes , Genoma Humano , Humanos , Mutagênese/genética , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Uracila-DNA Glicosidase/metabolismo
13.
Nat Commun ; 12(1): 4917, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389714

RESUMO

APOBEC3A is a cytidine deaminase driving mutagenesis in tumors. While APOBEC3A-induced mutations are common, APOBEC3A expression is rarely detected in cancer cells. This discrepancy suggests a tightly controlled process to regulate episodic APOBEC3A expression in tumors. In this study, we find that both viral infection and genotoxic stress transiently up-regulate APOBEC3A and pro-inflammatory genes using two distinct mechanisms. First, we demonstrate that STAT2 promotes APOBEC3A expression in response to foreign nucleic acid via a RIG-I, MAVS, IRF3, and IFN-mediated signaling pathway. Second, we show that DNA damage and DNA replication stress trigger a NF-κB (p65/IkBα)-dependent response to induce expression of APOBEC3A and other innate immune genes, independently of DNA or RNA sensing pattern recognition receptors and the IFN-signaling response. These results not only reveal the mechanisms by which tumors could episodically up-regulate APOBEC3A but also highlight an alternative route to stimulate the immune response after DNA damage independently of cGAS/STING or RIG-I/MAVS.


Assuntos
Citidina Desaminase/genética , Dano ao DNA , Regulação da Expressão Gênica , Imunidade/genética , Proteínas/genética , Transdução de Sinais/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Citidina Desaminase/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células THP-1 , Fator de Transcrição RelA/metabolismo , Regulação para Cima , Vírus/crescimento & desenvolvimento
14.
STAR Protoc ; 2(1): 100378, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33778777

RESUMO

Micronuclei are aberrant nuclear compartments that form when chromosomes or chromosome fragments fail to incorporate into a primary nucleus during mitotic exit. Ruptures at the micronuclear envelope are associated with DNA damage and activation of immune sensing pathways. To gain insights into these processes, we have developed a method to purify ruptured micronuclei. This method paves the way toward understanding the consequences of micronuclear envelope rupture. For complete details on the use and execution of this protocol, please refer to Mohr et al. (2021).


Assuntos
Citometria de Fluxo/métodos , Testes para Micronúcleos/métodos , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Células Cultivadas , Cromatina/metabolismo , Cromossomos/genética , Dano ao DNA , Instabilidade Genômica , Humanos , Espaço Intranuclear/fisiologia , Micronúcleos com Defeito Cromossômico , Membrana Nuclear/metabolismo
15.
Mol Cell ; 81(4): 739-755.e7, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33606975

RESUMO

Cyclic GMP-AMP synthase (cGAS) recognition of cytosolic DNA is critical for the immune response to cancer and pathogen infection. Here, we discover that cGAS-DNA phase separation is required to resist negative regulation and allow efficient sensing of immunostimulatory DNA. We map the molecular determinants of cGAS condensate formation and demonstrate that phase separation functions to limit activity of the cytosolic exonuclease TREX1. Mechanistically, phase separation forms a selective environment that suppresses TREX1 catalytic function and restricts DNA degradation to an outer shell at the droplet periphery. We identify a TREX1 mutation associated with the severe autoimmune disease Aicardi-Goutières syndrome that increases penetration of TREX1 into the repressive droplet interior and specifically impairs degradation of phase-separated DNA. Our results define a critical function of cGAS-DNA phase separation and reveal a molecular mechanism that balances cytosolic DNA degradation and innate immune activation.


Assuntos
Doenças Autoimunes do Sistema Nervoso/enzimologia , Citosol/metabolismo , DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Mutação , Malformações do Sistema Nervoso/enzimologia , Nucleotidiltransferases/metabolismo , Fosfoproteínas/metabolismo , Doenças Autoimunes do Sistema Nervoso/genética , Catálise , Linhagem Celular Tumoral , DNA/genética , Exodesoxirribonucleases/genética , Células HEK293 , Humanos , Malformações do Sistema Nervoso/genética , Nucleotidiltransferases/genética , Fosfoproteínas/genética
16.
Mol Cell ; 81(4): 724-738.e9, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33476576

RESUMO

Micronuclei are aberrant nuclear compartments that can form as a result of chromosome mis-segregation. Frequent loss of micronuclear envelope integrity exposes DNA to the cytoplasm, leading to chromosome fragmentation and immune activation. Here, we use micronuclei purification to show that the endoplasmic reticulum (ER)-associated nuclease TREX1 inhibits cGAS activation at micronuclei by degrading micronuclear DNA upon micronuclear envelope rupture. We demonstrate that the ER accesses ruptured micronuclei and plays a critical role in enabling TREX1 nucleolytic attack. TREX1 mutations, previously implicated in immune disease, untether TREX1 from the ER, disrupt TREX1 localization to micronuclei, diminish micronuclear DNA damage, and enhance cGAS activation. These results establish ER-directed resection of micronuclear DNA by TREX1 as a critical regulator of cytosolic DNA sensing in chromosomally unstable cells and provide a mechanistic basis for the importance of TREX1 ER tethering in preventing autoimmunity.


Assuntos
Dano ao DNA , Retículo Endoplasmático/metabolismo , Exodesoxirribonucleases/metabolismo , Micronúcleos com Defeito Cromossômico , Mutação , Nucleotidiltransferases/metabolismo , Fosfoproteínas/metabolismo , Retículo Endoplasmático/genética , Ativação Enzimática/genética , Exodesoxirribonucleases/genética , Células HEK293 , Humanos , Nucleotidiltransferases/genética , Fosfoproteínas/genética , Transporte Proteico/genética
17.
Cell ; 183(1): 197-210.e32, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007263

RESUMO

Cancer genomes often harbor hundreds of somatic DNA rearrangement junctions, many of which cannot be easily classified into simple (e.g., deletion) or complex (e.g., chromothripsis) structural variant classes. Applying a novel genome graph computational paradigm to analyze the topology of junction copy number (JCN) across 2,778 tumor whole-genome sequences, we uncovered three novel complex rearrangement phenomena: pyrgo, rigma, and tyfonas. Pyrgo are "towers" of low-JCN duplications associated with early-replicating regions, superenhancers, and breast or ovarian cancers. Rigma comprise "chasms" of low-JCN deletions enriched in late-replicating fragile sites and gastrointestinal carcinomas. Tyfonas are "typhoons" of high-JCN junctions and fold-back inversions associated with expressed protein-coding fusions, breakend hypermutation, and acral, but not cutaneous, melanomas. Clustering of tumors according to genome graph-derived features identified subgroups associated with DNA repair defects and poor prognosis.


Assuntos
Variação Estrutural do Genoma/genética , Genômica/métodos , Neoplasias/genética , Inversão Cromossômica/genética , Cromotripsia , Variações do Número de Cópias de DNA/genética , Rearranjo Gênico/genética , Genoma Humano/genética , Humanos , Mutação/genética , Sequenciamento Completo do Genoma/métodos
18.
DNA Repair (Amst) ; 94: 102905, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32818816

RESUMO

The APOBEC family of cytidine deaminases has been proposed to represent a major enzymatic source of mutations in cancer. Here, we summarize available evidence that links APOBEC deaminases to cancer mutagenesis. We also highlight newly identified human cell models of APOBEC mutagenesis, including cancer cell lines with suspected endogenous APOBEC activity and a cell system of telomere crisis-associated mutations. Finally, we draw on recent data to propose potential causes of APOBEC misregulation in cancer, including the instigating factors, the relevant mutator(s), and the mechanisms underlying generation of the genome-dispersed and clustered APOBEC-induced mutations.


Assuntos
Desaminases APOBEC/genética , Mutação , Neoplasias/enzimologia , Animais , Humanos , Mutagênese , Neoplasias/genética
19.
Nat Genet ; 52(9): 884-890, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32719516

RESUMO

Chromothripsis and kataegis are frequently observed in cancer and may arise from telomere crisis, a period of genome instability during tumorigenesis when depletion of the telomere reserve generates unstable dicentric chromosomes1-5. Here we examine the mechanism underlying chromothripsis and kataegis by using an in vitro telomere crisis model. We show that the cytoplasmic exonuclease TREX1, which promotes the resolution of dicentric chromosomes4, plays a prominent role in chromothriptic fragmentation. In the absence of TREX1, the genome alterations induced by telomere crisis primarily involve breakage-fusion-bridge cycles and simple genome rearrangements rather than chromothripsis. Furthermore, we show that the kataegis observed at chromothriptic breakpoints is the consequence of cytosine deamination by APOBEC3B. These data reveal that chromothripsis and kataegis arise from a combination of nucleolytic processing by TREX1 and cytosine editing by APOBEC3B.


Assuntos
Citidina Desaminase/genética , Exodesoxirribonucleases/genética , Fosfoproteínas/genética , Telômero/genética , Desaminases APOBEC , Linhagem Celular Tumoral , Cromotripsia , Citosina Desaminase/genética , Instabilidade Genômica/genética , Humanos , Mutação/genética , Neoplasias/genética , Células U937
20.
Annu Rev Cell Dev Biol ; 36: 85-114, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32692592

RESUMO

The nuclear envelope is often depicted as a static barrier that regulates access between the nucleus and the cytosol. However, recent research has identified many conditions in cultured cells and in vivo in which nuclear membrane ruptures cause the loss of nuclear compartmentalization. These conditions include some that are commonly associated with human disease, such as migration of cancer cells through small spaces and expression of nuclear lamin disease mutations in both cultured cells and tissues undergoing nuclear migration. Nuclear membrane ruptures are rapidly repaired in the nucleus but persist in nuclear compartments that form around missegregated chromosomes called micronuclei. This review summarizes what is known about the mechanisms of nuclear membrane rupture and repair in both the main nucleus and micronuclei, and highlights recent work connecting the loss of nuclear integrity to genome instability and innate immune signaling. These connections link nuclear membrane rupture to complex chromosome alterations, tumorigenesis, and laminopathy etiologies.


Assuntos
Membrana Nuclear/patologia , Animais , Instabilidade Genômica , Humanos , Imunidade Inata , Micronúcleo Germinativo/metabolismo , Modelos Biológicos , Membrana Nuclear/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA