Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 32(20): 205603, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33567416

RESUMO

In this work, we synthesized colloidal silica nanospheres with an average size of 400 nm through the modified Stöber method and successfully fabricated an ordered close-packed silica nanosphere monolayer onto ITO-coated glass substrates using a three-step spin-coating method. ITO films showed resistivity comparable to that of commercial ITO and the silica nanosphere monolayer-coated ITO/glass substrate exhibited good optical transmittance in the visible (550 nm) and near-infrared (900 nm) regions of 62% and 82%, respectively. The results suggest that this monolayer can be used in optoelectronic devices to enhance efficiency in photovoltaic cells.

2.
Nanotechnology ; 23(25): 255305, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22652838

RESUMO

In this work, we clarify the features of the lateral damage of line defects in single layer graphene. The line defects were produced through well-controlled etching of graphene using a Ga(+) focused ion beam. The lateral damage length was obtained from both the integrated intensity of the disorder induced Raman D band and the minimum ion fluence. Also, the line defects were characterized by polarized Raman spectroscopy. It was found that graphene is resilient under the etching conditions since the intensity of the defect induced Raman D peak exhibits a dependence on the direction of the lines relative to the crystalline lattice and also on the direction of the laser polarization relative to the lines. In addition, electrical measurements of the modified graphene were performed. Different ion fluences were used in order to obtain a completely insulating defect line in graphene, which was determined experimentally by means of charge injection and electric force microscopy measurements. These studies demonstrate that a Ga+ ion column combined with Raman spectroscopy is a powerful technique to produce and understand well-defined periodic arrays of defects in graphene, opening possibilities for better control of nanocarbon devices.

3.
Ultramicroscopy ; 111(8): 1338-42, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21864774

RESUMO

This work reports Ga(+) focused ion beam nanopatterning to create amorphous defects with periodic square arrays in highly oriented pyrolytic graphite and the use of Raman spectroscopy as a new protocol to test and compare progresses in ion beam optics, for low fluence bombardment or fast writing speed. This can be ultimately used as a metrological tool for comparing different FIB machines and can contribute to Focused Ion Beam (FIB) development in general for tailoring nanostructures with higher precision. In order to do that, the amount of ion at each spot was varied from about 10(6) down to roughly 1 ion per dot. These defects were also analyzed by using high resolution scanning electron microscopy and atomic force microscopy. The sensitivities of these techniques were compared and a geometrical model is proposed for micro-Raman spectroscopy in which the intensity of the defect induced D band, for a fixed ion dose, is associated with the diameter of the ion beam. In addition, the lateral increase in the bombarded spot due to the cascade effect of the ions on graphite surface was extracted from this model. A semi-quantitative analysis of the distribution of ions at low doses per dot or high writing speed for soft modification of materials is discussed.

4.
Nano Lett ; 9(6): 2267-72, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19449833

RESUMO

Substitutional phosphorus doping in single-wall carbon nanotubes (SWNTs) is investigated by density functional theory and resonance Raman spectroscopy. Electronic structure calculations predict charge localization on the phosphorus atom, generating nondispersive valence and conduction bands close to the Fermi level. Besides confirming sustitutional doping, accurate analysis of electron and phonon renormalization effects in the double-resonance Raman process elucidates the different nature of the phosphorus donor doping (localized) when compared to nitrogen substitutional doping (nonlocalized) in SWNTs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA