Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Pathog ; 19(5): e1011369, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146077

RESUMO

The trematode parasite Schistosoma mansoni causes schistosomiasis, which affects over 200 million people worldwide. Schistosomes are dioecious, with egg laying depending on the females' obligatory pairing with males. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein-coding potential that have been involved in other species with reproduction, stem cell maintenance, and drug resistance. In S. mansoni, we recently showed that the knockdown of one lncRNA affects the pairing status of these parasites. Here, we re-analyzed public RNA-Seq data from paired and unpaired adult male and female worms and their gonads, obtained from mixed-sex or single-sex cercariae infections, and found thousands of differentially expressed pairing-dependent lncRNAs among the 23 biological samples that were compared. The expression levels of selected lncRNAs were validated by RT-qPCR using an in vitro unpairing model. In addition, the in vitro silencing of three selected lncRNAs showed that knockdown of these pairing-dependent lncRNAs reduced cell proliferation in adult worms and their gonads, and are essential for female vitellaria maintenance, reproduction, and/or egg development. Remarkably, in vivo silencing of each of the three selected lncRNAs significantly reduced worm burden in infected mice by 26 to 35%. Whole mount in situ hybridization experiments showed that these pairing-dependent lncRNAs are expressed in reproductive tissues. These results show that lncRNAs are key components intervening in S. mansoni adult worm homeostasis, which affects pairing status and survival in the mammalian host, thus presenting great potential as new therapeutic target candidates.


Assuntos
Parasitos , RNA Longo não Codificante , Esquistossomose mansoni , Masculino , Feminino , Animais , Camundongos , Schistosoma mansoni/genética , RNA Longo não Codificante/genética , Fertilidade/genética , Reprodução , Parasitos/genética , Esquistossomose mansoni/parasitologia , Mamíferos
2.
Nat Commun ; 13(1): 629, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110564

RESUMO

The largest living rodent, capybara, can efficiently depolymerize and utilize lignocellulosic biomass through microbial symbiotic mechanisms yet elusive. Herein, we elucidate the microbial community composition, enzymatic systems and metabolic pathways involved in the conversion of dietary fibers into short-chain fatty acids, a main energy source for the host. In this microbiota, the unconventional enzymatic machinery from Fibrobacteres seems to drive cellulose degradation, whereas a diverse set of carbohydrate-active enzymes from Bacteroidetes, organized in polysaccharide utilization loci, are accounted to tackle complex hemicelluloses typically found in gramineous and aquatic plants. Exploring the genetic potential of this community, we discover a glycoside hydrolase family of ß-galactosidases (named as GH173), and a carbohydrate-binding module family (named as CBM89) involved in xylan binding that establishes an unprecedented three-dimensional fold among associated modules to carbohydrate-active enzymes. Together, these results demonstrate how the capybara gut microbiota orchestrates the depolymerization and utilization of plant fibers, representing an untapped reservoir of enzymatic mechanisms to overcome the lignocellulose recalcitrance, a central challenge toward a sustainable and bio-based economy.


Assuntos
Microbioma Gastrointestinal , Plantas/metabolismo , Polissacarídeos/metabolismo , Roedores/microbiologia , Animais , Bactérias/classificação , Bactérias/enzimologia , Bactérias/metabolismo , Bacteroidetes/enzimologia , Bacteroidetes/genética , Bacteroidetes/metabolismo , Metabolismo dos Carboidratos , Cristalografia por Raios X , Fibras na Dieta/metabolismo , Glicosídeo Hidrolases/metabolismo , Lignina , Filogenia , Simbiose , Xilanos/metabolismo
3.
Sci Rep ; 11(1): 16816, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413342

RESUMO

Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) is the most used, fast, and reproducible method to confirm large-scale gene expression data. The use of stable reference genes for the normalization of RT-qPCR assays is recognized worldwide. No systematic study for selecting appropriate reference genes for usage in RT-qPCR experiments comparing gene expression levels at different Schistosoma mansoni life-cycle stages has been performed. Most studies rely on genes commonly used in other organisms, such as actin, tubulin, and GAPDH. Therefore, the present study focused on identifying reference genes suitable for RT-qPCR assays across six S. mansoni developmental stages. The expression levels of 25 novel candidates that we selected based on the analysis of public RNA-Seq datasets, along with eight commonly used reference genes, were systematically tested by RT-qPCR across six developmental stages of S. mansoni (eggs, miracidia, cercariae, schistosomula, adult males and adult females). The stability of genes was evaluated with geNorm, NormFinder and RefFinder algorithms. The least stable candidate reference genes tested were actin, tubulin and GAPDH. The two most stable reference genes suitable for RT-qPCR normalization were Smp_101310 (Histone H4 transcription factor) and Smp_196510 (Ubiquitin recognition factor in ER-associated degradation protein 1). Performance of these two genes as normalizers was successfully evaluated with females maintained unpaired or paired to males in culture for 8 days, or with worm pairs exposed for 16 days to double-stranded RNAs to silence a protein-coding gene. This study provides reliable reference genes for RT-qPCR analysis using samples from six different S. mansoni life-cycle stages.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real/normas , Schistosoma mansoni/genética , Animais , Feminino , Perfilação da Expressão Gênica , Inativação Gênica , Estágios do Ciclo de Vida/genética , Masculino , Fases de Leitura Aberta/genética , Padrões de Referência , Transcriptoma/genética
4.
Sci Rep ; 10(1): 21565, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33299037

RESUMO

Schistosoma mansoni is a flatworm that causes schistosomiasis, a neglected tropical disease that affects more than 200 million people worldwide. There is only one drug indicated for treatment, praziquantel, which may lead to parasite resistance emergence. The ribonucleoside analogue 5-azacytidine (5-AzaC) is an epigenetic drug that inhibits S. mansoni oviposition and ovarian development through interference with parasite transcription, translation and stem cell activities. Therefore, studying the downstream pathways affected by 5-AzaC in S. mansoni may contribute to the discovery of new drug targets. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein coding potential that have been involved in reproduction, stem cell maintenance and drug resistance. We have recently published a catalog of lncRNAs expressed in S. mansoni life-cycle stages, tissues and single cells. However, it remains largely unknown if lncRNAs are responsive to epigenetic drugs in parasites. Here, we show by RNA-Seq re-analyses that hundreds of lncRNAs are differentially expressed after in vitro 5-AzaC treatment of S. mansoni females, including intergenic, antisense and sense lncRNAs. Many of these lncRNAs belong to co-expression network modules related to male metabolism and are also differentially expressed in unpaired compared with paired females and ovaries. Half of these lncRNAs possess histone marks at their genomic loci, indicating regulation by histone modification. Among a selected set of 8 lncRNAs, half of them were validated by RT-qPCR as differentially expressed in females, and some of them also in males. Interestingly, these lncRNAs are also expressed in other life-cycle stages. This study demonstrates that many lncRNAs potentially involved with S. mansoni reproductive biology are modulated by 5-AzaC and sheds light on the relevance of exploring lncRNAs in response to drug treatments in parasites.


Assuntos
Azacitidina/farmacologia , Inibidores Enzimáticos/farmacologia , RNA Longo não Codificante/metabolismo , Schistosoma mansoni/efeitos dos fármacos , Animais , Epigênese Genética/efeitos dos fármacos , Estágios do Ciclo de Vida/efeitos dos fármacos , RNA Longo não Codificante/genética , Schistosoma mansoni/genética , Schistosoma mansoni/metabolismo
5.
Methods Mol Biol ; 2151: 109-133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32452000

RESUMO

In the last few years, long non-coding RNAs (lncRNAs) have been widely studied in humans, and their relevance for physiological and pathological conditions has been demonstrated. In parasites, there are only a few works, such as in Plasmodium falciparum, where it was shown that an lncRNA regulates the expression of a gene associated with immune system evasion, also indicating the relevance of understanding the role of this class of RNAs in parasites. In Schistosoma mansoni, in the last 2 years, there were four published articles related to the annotation of lncRNAs in different life cycle stages using RNA-Seq libraries. In order to make this process of lncRNA identification and annotation more accessible to biologists with no bioinformatics training, considering the growing number of S. mansoni RNA-Seq libraries publicly available from different sources, such as ovary tissues from bi-sex and single-sex infections, and the potential of lncRNAs as therapeutic targets, we provide this step-by-step protocol of lncRNA identification and quantification. This guide includes the download of RNA-Seq libraries from a public database and reads processing and mapping against the genome, transcript reconstruction, novel lncRNA identification, transcripts expression level determination, and the identification of differentially expressed lncRNAs.


Assuntos
Biologia Computacional/métodos , RNA Longo não Codificante/genética , Schistosoma mansoni/genética , Animais , Sequência de Bases , Bases de Dados Genéticas , Regulação da Expressão Gênica , Biblioteca Gênica , Anotação de Sequência Molecular , Análise de Componente Principal , Controle de Qualidade , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA-Seq , Transcriptoma/genética
6.
Noncoding RNA ; 6(2)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244675

RESUMO

Schistosoma japonicum is a flatworm that causes schistosomiasis, a neglected tropical disease. S. japonicum RNA-Seq analyses has been previously reported in the literature on females and males obtained during sexual maturation from 14 to 28 days post-infection in mouse, resulting in the identification of protein-coding genes and pathways, whose expression levels were related to sexual development. However, this work did not include an analysis of long non-coding RNAs (lncRNAs). Here, we applied a pipeline to identify and annotate lncRNAs in 66 S. japonicum RNA-Seq publicly available libraries, from different life-cycle stages. We also performed co-expression analyses to find stage-specific lncRNAs possibly related to sexual maturation. We identified 12,291 S. japonicum expressed lncRNAs. Sequence similarity search and synteny conservation indicated that some 14% of S. japonicum intergenic lncRNAs have synteny conservation with S. mansoni intergenic lncRNAs. Co-expression analyses showed that lncRNAs and protein-coding genes in S. japonicum males and females have a dynamic co-expression throughout sexual maturation, showing differential expression between the sexes; the protein-coding genes were related to the nervous system development, lipid and drug metabolism, and overall parasite survival. Co-expression pattern suggests that lncRNAs possibly regulate these processes or are regulated by the same activation program as that of protein-coding genes.

7.
Front Genet ; 10: 823, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572441

RESUMO

Long non-coding RNAs (lncRNAs) (>200 nt) are expressed at levels lower than those of the protein-coding mRNAs, and in all eukaryotic model species where they have been characterized, they are transcribed from thousands of different genomic loci. In humans, some four dozen lncRNAs have been studied in detail, and they have been shown to play important roles in transcriptional regulation, acting in conjunction with transcription factors and epigenetic marks to modulate the tissue-type specific programs of transcriptional gene activation and repression. In Schistosoma mansoni, around 10,000 lncRNAs have been identified in previous works. However, the limited number of RNA-sequencing (RNA-seq) libraries that had been previously assessed, together with the use of old and incomplete versions of the S. mansoni genome and protein-coding transcriptome annotations, have hampered the identification of all lncRNAs expressed in the parasite. Here we have used 633 publicly available S. mansoni RNA-seq libraries from whole worms at different stages (n = 121), from isolated tissues (n = 24), from cell-populations (n = 81), and from single-cells (n = 407). We have assembled a set of 16,583 lncRNA transcripts originated from 10,024 genes, of which 11,022 are novel S. mansoni lncRNA transcripts, whereas the remaining 5,561 transcripts comprise 120 lncRNAs that are identical to and 5,441 lncRNAs that have gene overlap with S. mansoni lncRNAs already reported in previous works. Most importantly, our more stringent assembly and filtering pipeline has identified and removed a set of 4,293 lncRNA transcripts from previous publications that were in fact derived from partially processed mRNAs with intron retention. We have used weighted gene co-expression network analyses and identified 15 different gene co-expression modules. Each parasite life-cycle stage has at least one highly correlated gene co-expression module, and each module is comprised of hundreds to thousands lncRNAs and mRNAs having correlated co-expression patterns at different stages. Inspection of the top most highly connected genes within the modules' networks has shown that different lncRNAs are hub genes at different life-cycle stages, being among the most promising candidate lncRNAs to be further explored for functional characterization.

8.
Pestic Biochem Physiol ; 146: 63-70, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29626993

RESUMO

BACKGROUND: Plants have developed a vast range of mechanisms to compete with phytophagous insects, including entomotoxic proteins such as ureases. The legume Canavalia ensiformis produces several urease isoforms, of which the more abundant is called Jack Bean Urease (JBU). Previews work has demonstrated the potential insecticidal effects of JBU, by mechanisms so far not entirely elucidated. In this work, we investigated the mechanisms involved in the JBU-induced activity upon neurotransmitter release on insect neuromuscular junctions. METHODS: Electrophysiological recordings of nerve and muscle action potentials, and calcium imaging bioassays were employed. RESULTS AND CONCLUSION: JBU (0.28 mg/animal/day) in Locusta migratoria 2nd instar through feeding and injection did not induce lethality, although it did result in a reduction of 20% in the weight gain at the end of 168 h (n = 9, p ≤ 0.05). JBU (0.014 and 0.14 mg) injected direct into the locust hind leg induced a dose and time-dependent decrease in the amplitude of muscle action potentials, with a maximum decrease of 70% in the amplitude at the highest dose (n = 5, p ≤ 0.05). At the same doses JBU did not alter the amplitude of action potentials evoked from motor neurons. Using Drosophila 3rd instar larvae neuromuscular preparations, JBU (10-7 M) increased the occurrence of miniature Excitatory Junctional Potentials (mEJPs) in the presence of 1 mM CaCl2 (n = 5, p ≤ 0.05). In low calcium (0.4 mM) assays, JBU (10-7 M) was not able to modulate the occurrence of the events. In Ca2+-free conditions, with EGTA or CoCl2, JBU induced a significant decrease in the occurrence of mEPJs (n = 5, p ≤ 0.05). Injected into the 3rd abdominal ganglion of Nauphoeta cinerea cockroaches, JBU (1 µM) induced a significant increase in Ca2+ influx (n = 7, p ≤ 0.01), similar to that seen for high KCl (35 mM) condition. Taken together the results confirm a direct action of JBU upon insect neuromuscular junctions and possibly central synapses, probably by disrupting the calcium machinery in the pre-synaptic region of the neurons.


Assuntos
Acetilcolinesterase/genética , Lepidópteros/genética , Mutação , Animais , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA