Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nucleic Acids Res ; 51(D1): D678-D689, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36350631

RESUMO

The National Institute of Allergy and Infectious Diseases (NIAID) established the Bioinformatics Resource Center (BRC) program to assist researchers with analyzing the growing body of genome sequence and other omics-related data. In this report, we describe the merger of the PAThosystems Resource Integration Center (PATRIC), the Influenza Research Database (IRD) and the Virus Pathogen Database and Analysis Resource (ViPR) BRCs to form the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) https://www.bv-brc.org/. The combined BV-BRC leverages the functionality of the bacterial and viral resources to provide a unified data model, enhanced web-based visualization and analysis tools, bioinformatics services, and a powerful suite of command line tools that benefit the bacterial and viral research communities.


Assuntos
Genômica , Software , Vírus , Humanos , Bactérias/genética , Biologia Computacional , Bases de Dados Genéticas , Influenza Humana , Vírus/genética
2.
Emerg Infect Dis ; 24(1): 75-86, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29260686

RESUMO

During December 2016-February 2017, influenza A viruses of the H7N2 subtype infected ≈500 cats in animal shelters in New York, NY, USA, indicating virus transmission among cats. A veterinarian who treated the animals also became infected with feline influenza A(H7N2) virus and experienced respiratory symptoms. To understand the pathogenicity and transmissibility of these feline H7N2 viruses in mammals, we characterized them in vitro and in vivo. Feline H7N2 subtype viruses replicated in the respiratory organs of mice, ferrets, and cats without causing severe lesions. Direct contact transmission of feline H7N2 subtype viruses was detected in ferrets and cats; in cats, exposed animals were also infected via respiratory droplet transmission. These results suggest that the feline H7N2 subtype viruses could spread among cats and also infect humans. Outbreaks of the feline H7N2 viruses could, therefore, pose a risk to public health.


Assuntos
Doenças do Gato/virologia , Vírus da Influenza A Subtipo H7N2/genética , Infecções por Orthomyxoviridae/veterinária , Animais , Doenças do Gato/epidemiologia , Gatos , Feminino , Furões , Humanos , Vírus da Influenza A Subtipo H7N2/classificação , Vírus da Influenza A Subtipo H7N2/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Influenza Humana/virologia , Camundongos Endogâmicos BALB C , Cidade de Nova Iorque/epidemiologia , Infecções por Orthomyxoviridae/virologia , Filogenia , Cultura de Vírus
3.
Nucleic Acids Res ; 45(D1): D466-D474, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27679478

RESUMO

The Influenza Research Database (IRD) is a U.S. National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Bioinformatics Resource Center dedicated to providing bioinformatics support for influenza virus research. IRD facilitates the research and development of vaccines, diagnostics and therapeutics against influenza virus by providing a comprehensive collection of influenza-related data integrated from various sources, a growing suite of analysis and visualization tools for data mining and hypothesis generation, personal workbench spaces for data storage and sharing, and active user community support. Here, we describe the recent improvements in IRD including the use of cloud and high performance computing resources, analysis and visualization of user-provided sequence data with associated metadata, predictions of novel variant proteins, annotations of phenotype-associated sequence markers and their predicted phenotypic effects, hemagglutinin (HA) clade classifications, an automated tool for HA subtype numbering conversion, linkouts to disease event data and the addition of host factor and antiviral drug components. All data and tools are freely available without restriction from the IRD website at https://www.fludb.org.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Vírus da Influenza A , Pesquisa , Software , Vírus da Influenza A/classificação , Vírus da Influenza A/fisiologia , Tipagem Molecular/métodos , Fenótipo , Filogenia , Proteínas Virais/genética , Virulência
4.
mSphere ; 1(6)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27981236

RESUMO

The H1 subtype of influenza A viruses (IAVs) has been circulating in swine since the 1918 human influenza pandemic. Over time, and aided by further introductions from nonswine hosts, swine H1 viruses have diversified into three genetic lineages. Due to limited global data, these H1 lineages were named based on colloquial context, leading to a proliferation of inconsistent regional naming conventions. In this study, we propose rigorous phylogenetic criteria to establish a globally consistent nomenclature of swine H1 virus hemagglutinin (HA) evolution. These criteria applied to a data set of 7,070 H1 HA sequences led to 28 distinct clades as the basis for the nomenclature. We developed and implemented a web-accessible annotation tool that can assign these biologically informative categories to new sequence data. The annotation tool assigned the combined data set of 7,070 H1 sequences to the correct clade more than 99% of the time. Our analyses indicated that 87% of the swine H1 viruses from 2010 to the present had HAs that belonged to 7 contemporary cocirculating clades. Our nomenclature and web-accessible classification tool provide an accurate method for researchers, diagnosticians, and health officials to assign clade designations to HA sequences. The tool can be updated readily to track evolving nomenclature as new clades emerge, ensuring continued relevance. A common global nomenclature facilitates comparisons of IAVs infecting humans and pigs, within and between regions, and can provide insight into the diversity of swine H1 influenza virus and its impact on vaccine strain selection, diagnostic reagents, and test performance, thereby simplifying communication of such data. IMPORTANCE A fundamental goal in the biological sciences is the definition of groups of organisms based on evolutionary history and the naming of those groups. For influenza A viruses (IAVs) in swine, understanding the hemagglutinin (HA) genetic lineage of a circulating strain aids in vaccine antigen selection and allows for inferences about vaccine efficacy. Previous reporting of H1 virus HA in swine relied on colloquial names, frequently with incriminating and stigmatizing geographic toponyms, making comparisons between studies challenging. To overcome this, we developed an adaptable nomenclature using measurable criteria for historical and contemporary evolutionary patterns of H1 global swine IAVs. We also developed a web-accessible tool that classifies viruses according to this nomenclature. This classification system will aid agricultural production and pandemic preparedness through the identification of important changes in swine IAVs and provides terminology enabling discussion of swine IAVs in a common context among animal and human health initiatives.

5.
Nat Commun ; 6: 8148, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26334134

RESUMO

Vaccination is one of the most cost-effective ways to prevent infection. Influenza vaccines propagated in cultured cells are approved for use in humans, but their yields are often suboptimal. Here, we screened A/Puerto Rico/8/34 (PR8) virus mutant libraries to develop vaccine backbones (defined here as the six viral RNA segments not encoding haemagglutinin and neuraminidase) that support high yield in cell culture. We also tested mutations in the coding and regulatory regions of the virus, and chimeric haemagglutinin and neuraminidase genes. A combination of high-yield mutations from these screens led to a PR8 backbone that improved the titres of H1N1, H3N2, H5N1 and H7N9 vaccine viruses in African green monkey kidney and Madin-Darby canine kidney cells. This PR8 backbone also improves titres in embryonated chicken eggs, a common propagation system for influenza viruses. This PR8 vaccine backbone thus represents an advance in seasonal and pandemic influenza vaccine development.


Assuntos
Vírus da Influenza A/genética , Vacinas contra Influenza/biossíntese , Animais , Sequência de Bases , Chlorocebus aethiops , Cães , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Células Madin Darby de Rim Canino , Dados de Sequência Molecular , Mutação , Neuraminidase/genética , Células Vero
6.
Nat Commun ; 6: 7491, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26082035

RESUMO

Avian influenza viruses of the H5N1 subtype pose a serious global health threat due to the high mortality (>60%) associated with the disease caused by these viruses and the lack of protective antibodies to these viruses in the general population. The factors that enable avian H5N1 influenza viruses to replicate in humans are not completely understood. Here we use a high-throughput screening approach to identify novel mutations in the polymerase genes of an avian H5N1 virus that confer efficient polymerase activity in mammalian cells. Several of the identified mutations (which have previously been found in natural isolates) increase viral replication in mammalian cells and virulence in infected mice compared with the wild-type virus. The identification of amino-acid mutations in avian H5N1 influenza virus polymerase complexes that confer increased replication and virulence in mammals is important for the identification of circulating H5N1 viruses with an increased potential to infect humans.


Assuntos
Adaptação Biológica , Virus da Influenza A Subtipo H5N1/genética , Proteínas Virais/genética , Animais , Cães , Feminino , Genes Reporter , Sequenciamento de Nucleotídeos em Larga Escala , Ensaios de Triagem em Larga Escala , Virus da Influenza A Subtipo H5N1/patogenicidade , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , Mutação , Replicação Viral
7.
Elife ; 3: e03883, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25321142

RESUMO

Assessing the pandemic risk posed by specific non-human influenza A viruses is an important goal in public health research. As influenza virus genome sequencing becomes cheaper, faster, and more readily available, the ability to predict pandemic potential from sequence data could transform pandemic influenza risk assessment capabilities. However, the complexities of the relationships between virus genotype and phenotype make such predictions extremely difficult. The integration of experimental work, computational tool development, and analysis of evolutionary pathways, together with refinements to influenza surveillance, has the potential to transform our ability to assess the risks posed to humans by non-human influenza viruses and lead to improved pandemic preparedness and response.


Assuntos
Influenza Humana/epidemiologia , Pandemias/prevenção & controle , Medição de Risco/métodos , Sequência de Bases , Evolução Biológica , Monitoramento Epidemiológico , Geografia , Humanos , Vírus da Influenza A/genética , Influenza Humana/virologia , Modelos Biológicos , Saúde Pública
8.
Nat Commun ; 5: 5021, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25289523

RESUMO

Highly pathogenic avian H5N1 influenza viruses have sporadically transmitted to humans causing high mortality. The mechanistic basis for adaptation is still poorly understood, although several residues in viral protein PB2 are known to be important for this event. Here, we demonstrate that three residues, 147T, 339T and 588T, in PB2 play critical roles in the virulence of avian H5N1 influenza viruses in a mammalian host in vitro and in vivo and, together, result in a phenotype comparable to that conferred by the previously known PB2-627K mutation with respect to virus polymerase activity. A virus with the three residues and 627K in PB2, as has been isolated from a lethal human case, is more pathogenic than viruses with only the three residues or 627K in PB2. Importantly, H5N1 viruses bearing the former three PB2 residues have circulated widely in recent years in avian species in nature.


Assuntos
Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Fenótipo , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Animais , Análise por Conglomerados , Biologia Computacional , Primers do DNA/genética , Cães , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Genética Reversa/métodos , Alinhamento de Sequência , Virulência
9.
J Virol ; 88(9): 4877-96, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24522919

RESUMO

UNLABELLED: Novel influenza A viruses of the H7N9 subtype [A(H7N9)] emerged in the spring of 2013 in China and had infected 163 people as of 10 January 2014; 50 of them died of the severe respiratory infection caused by these viruses. Phylogenetic studies have indicated that the novel A(H7N9) viruses emerged from reassortment of H7, N9, and H9N2 viruses. Inspections of protein sequences from A(H7N9) viruses and their immediate predecessors revealed several amino acid changes in A(H7N9) viruses that may have facilitated transmission and replication in the novel host. Since mutations that occurred more ancestrally may also have contributed to the genesis of A(H7N9) viruses, we inferred historical evolutionary events leading to the novel viruses. We identified a number of amino acid changes on the evolutionary path to A(H7N9) viruses, including substitutions that may be associated with host range, replicative ability, and/or host responses to infection. The biological significance of these amino acid changes can be tested in future studies. IMPORTANCE: The novel influenza A viruses of the H7N9 subtype [A(H7N9)], which first emerged in the spring of 2013, cause severe respiratory infections in humans. Here, we performed a comprehensive evolutionary analysis of the progenitors of A(H7N9) viruses to identify amino acid changes that may have been critical for the emergence of A(H7N9) viruses and their ability to infect humans. We provide a list of potentially important amino acid changes that can be tested for their significance for the influenza virus host range, replicative ability, and/or host responses to infection.


Assuntos
Substituição de Aminoácidos , Evolução Molecular , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Humana/virologia , Vírus Reordenados/genética , Animais , China , Humanos , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Filogenia , Vírus Reordenados/isolamento & purificação , Zoonoses/virologia
10.
J Virol ; 88(6): 3127-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24371069

RESUMO

UNLABELLED: Novel avian-origin influenza A(H7N9) viruses were first reported to infect humans in March 2013. To date, 143 human cases, including 45 deaths, have been recorded. By using sequence comparisons and phylogenetic and ancestral inference analyses, we identified several distinct amino acids in the A(H7N9) polymerase PA protein, some of which may be mammalian adapting. Mutant viruses possessing some of these amino acid changes, singly or in combination, were assessed for their polymerase activities and growth kinetics in mammalian and avian cells and for their virulence in mice. We identified several mutants that were slightly more virulent in mice than the wild-type A(H7N9) virus, A/Anhui/1/2013. These mutants also exhibited increased polymerase activity in human cells but not in avian cells. Our findings indicate that the PA protein of A(H7N9) viruses has several amino acid substitutions that are attenuating in mammals. IMPORTANCE: Novel avian-origin influenza A(H7N9) viruses emerged in the spring of 2013. By using computational analyses of A(H7N9) viral sequences, we identified several amino acid changes in the polymerase PA protein, which we then assessed for their effects on viral replication in cultured cells and mice. We found that the PA proteins of A(H7N9) viruses possess several amino acid substitutions that cause attenuation in mammals.


Assuntos
Substituição de Aminoácidos , Subtipo H7N9 do Vírus da Influenza A/enzimologia , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Influenza Humana/virologia , Doenças das Aves Domésticas/virologia , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Animais , Galinhas , Patos , Feminino , Humanos , Subtipo H7N9 do Vírus da Influenza A/classificação , Subtipo H7N9 do Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Virulência
11.
J Virol ; 87(9): 4861-71, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23408626

RESUMO

The influenza A virus NS1 protein affects virulence through several mechanisms, including the host's innate immune response and various signaling pathways. Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype continue to evolve through reassortment and mutations. Our recent phylogenetic analysis identified a group of HPAI H5N1 viruses with two characteristic mutations in NS1: the avian virus-type PDZ domain-binding motif ESEV (which affects virulence) was replaced with ESKV, and NS1-138F (which is highly conserved among all influenza A viruses and may affect the activation of the phosphatidylinositol 3-kinase [PI3K]/Akt signaling pathway) was replaced with NS1-138Y. Here, we show that an HPAI H5N1 virus (A/duck/Hunan/69/2004) encoding NS1-ESKV and NS1-138Y was confined to the respiratory tract of infected mice, whereas a mutant encoding NS1-ESEV and NS1-138F caused systemic infection and killed mice more efficiently. Mutation of either one of these sites had small effects on virulence. In addition, we found that the amino acid at NS1-138 affected not only the induction of the PI3K/Akt pathway but also the interaction of NS1 with cellular PDZ domain proteins. Similarly, the mutation in the PDZ domain-binding motif of NS1 altered its binding to cellular PDZ domain proteins and affected Akt phosphorylation. These findings suggest a functional interplay between the mutations at NS1-138 and NS1-229 that results in a synergistic effect on influenza virulence.


Assuntos
Virus da Influenza A Subtipo H5N1/metabolismo , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Humana/virologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Feminino , Células HEK293 , Humanos , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/genética , Influenza Humana/enzimologia , Influenza Humana/genética , Camundongos , Camundongos Endogâmicos BALB C , Domínios PDZ , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas não Estruturais Virais/genética , Virulência
13.
PLoS One ; 7(5): e36113, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615752

RESUMO

The influenza virus RNA polymerase complex is a heterotrimer composed of the PB1, PB2, and PA subunits. PB1, the catalytic core and structural backbone of the polymerase, possesses four highly conserved amino acid motifs that are present among all viral RNA-dependent RNA polymerases. A previous study demonstrated the importance of several of these conserved amino acids in PB1 for influenza polymerase activity through mutational analysis. However, a small number of viruses isolated in nature possesses non-consensus amino acids in one of the four motifs, most of which have not been tested for their replicative ability. Here, we assessed the transcription/replication activities of 25 selected PB1 mutations found in natural isolates by using minireplicon assays in human and avian cells. Most of the mutations tested significantly reduced polymerase activity. One exception was mutation K480R, observed in several pandemic (H1N1) 2009 viruses, which slightly increased polymerase activity relative to wild-type. However, in the background of the pandemic A/California/04/2009 (H1N1) virus, this mutation did not affect virus titers in cell culture. Our results further demonstrate the functional importance of the four conserved PB1 motifs in influenza virus transcription/replication. The finding of natural isolates with non-consensus PB1 motifs that are nonfunctional in minireplicon assays suggests compensatory mutations and/or mixed infections which may have 'rescued' the inactive PB1 protein.


Assuntos
Motivos de Aminoácidos , Sequência Conservada , Proteínas Virais/fisiologia , Western Blotting , Linhagem Celular , Humanos , Vírus da Influenza A/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Virais/química , Replicação Viral
14.
Influenza Other Respir Viruses ; 6(6): 404-16, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22260278

RESUMO

BACKGROUND: The recent emergence of the 2009 pandemic influenza A/H1N1 virus has highlighted the value of free and open access to influenza virus genome sequence data integrated with information about other important virus characteristics. DESIGN: The Influenza Research Database (IRD, http://www.fludb.org) is a free, open, publicly-accessible resource funded by the U.S. National Institute of Allergy and Infectious Diseases through the Bioinformatics Resource Centers program. IRD provides a comprehensive, integrated database and analysis resource for influenza sequence, surveillance, and research data, including user-friendly interfaces for data retrieval, visualization and comparative genomics analysis, together with personal log in-protected 'workbench' spaces for saving data sets and analysis results. IRD integrates genomic, proteomic, immune epitope, and surveillance data from a variety of sources, including public databases, computational algorithms, external research groups, and the scientific literature. RESULTS: To demonstrate the utility of the data and analysis tools available in IRD, two scientific use cases are presented. A comparison of hemagglutinin sequence conservation and epitope coverage information revealed highly conserved protein regions that can be recognized by the human adaptive immune system as possible targets for inducing cross-protective immunity. Phylogenetic and geospatial analysis of sequences from wild bird surveillance samples revealed a possible evolutionary connection between influenza virus from Delaware Bay shorebirds and Alberta ducks. CONCLUSIONS: The IRD provides a wealth of integrated data and information about influenza virus to support research of the genetic determinants dictating virus pathogenicity, host range restriction and transmission, and to facilitate development of vaccines, diagnostics, and therapeutics.


Assuntos
Bases de Dados de Ácidos Nucleicos , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Infecções por Orthomyxoviridae/veterinária , Orthomyxoviridae/genética , Animais , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Aves , Biologia Computacional/métodos , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Estados Unidos
15.
BMC Bioinformatics ; 12: 51, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21306634

RESUMO

BACKGROUND: Large databases of genetic data are often biased in their representation. Thus, selection of genetic data with desired properties, such as evolutionary representation or shared genotypes, is problematic. Selection on the basis of epidemiological variables may not achieve the desired properties. Available automated approaches to the selection of influenza genetic data make a tradeoff between speed and simplicity on the one hand and control over quality and contents of the dataset on the other hand. A poorly chosen dataset may be detrimental to subsequent analyses. RESULTS: We developed a tool, Tree Pruner, for obtaining a dataset with desired evolutionary properties from a large, biased genetic database. Tree Pruner provides the user with an interactive phylogenetic tree as a means of editing the initial dataset from which the tree was inferred. The tree visualization changes dynamically, using colors and shading, reflecting Tree Pruner actions. At the end of a Tree Pruner session, the editing actions are implemented in the dataset. Currently, Tree Pruner is implemented on the Influenza Research Database (IRD). The data management capabilities of the IRD allow the user to store a pruned dataset for additional pruning or for subsequent analysis. Tree Pruner can be easily adapted for use with other organisms. CONCLUSIONS: Tree Pruner is an efficient, manual tool for selecting a high-quality dataset with desired evolutionary properties from a biased database of genetic sequences. It offers an important alternative to automated approaches to the same goal, by providing the user with a dynamic, visual guide to the ongoing selection process and ultimate control over the contents (and therefore quality) of the dataset.


Assuntos
Mineração de Dados/métodos , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Software , Biologia Computacional/métodos , Filogenia , Viés de Seleção
16.
J Gen Virol ; 91(Pt 8): 1984-1995, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20392897

RESUMO

Highly pathogenic avian H5N1 viruses have circulated in South-east Asia for more than a decade and have now spread to more than 60 countries. The evolution of these viruses is characterized by frequent reassortment of the so-called 'internal' genes, creating novel genotypes. Additionally, over time, the surface glycoprotein, haemagglutinin (HA), which is the primary target of the adaptive immune response, has evolved by point mutation into 20 genetically and potentially antigenically distinct clades. To investigate the evolution of avian H5N1 influenza viruses, we undertook a high-resolution analysis of the reassortment of internal genes and evolution of HA of 651 avian H5N1 viruses from 2000 to 2008. Our analysis suggested: (i) all current H5N1 genotypes were derived from a single, clearly defined sequence of initial reassortment events; (ii) reassortment of just three of the internal genes had the most importance in avian H5N1 virus evolution; (iii) HA and the constellation of internal genes may be jointly important in the emergence of dominant variants. Further, our analysis led to the identification of evolutionarily significant molecular changes in the internal genes that may be significant for the emergence of these dominant variants.


Assuntos
Evolução Molecular , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/virologia , Filogenia , Análise de Sequência de DNA , Proteínas Virais/genética , Animais , Aves , Análise por Conglomerados , Biologia Computacional , Genótipo , Epidemiologia Molecular , Aves Domésticas , RNA Viral/genética , Homologia de Sequência
17.
Antivir Ther ; 14(6): 751-61, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19812437

RESUMO

BACKGROUND: High usage of the neuraminidase inhibitor (NAI) oseltamivir in Japan since 2003 led the Neuraminidase Inhibitor Susceptibility Network to assess the susceptibility of community isolates of influenza viruses to oseltamivir and zanamivir. METHODS: Isolates were tested by the enzyme inhibition assay and by neuraminidase (NA) sequence analysis. RESULTS: Among 1,141 A(H3N2) viruses and 171 type B viruses collected in Japan during the 2003-2004 season, 3 (0.3%) A(H3N2) isolates showed high 50% inhibitory concentrations (IC(50)) to oseltamivir. Each possessed a known resistance NA mutation at R292K or E119V. During the 2004-2005 season, no resistance was found among 567 influenza A(H3N2) or 60 A(H1N1) isolates, but 1 of 58 influenza B isolates had an NAI resistance mutation (D197N). Sequence analysis found that 4 (3%) of 132 A(H1N1) viruses from 2005-2006 had known NA resistance mutations (all H274Y), but no additional resistant isolates were detected from that or the subsequent 2006-2007 season. Concurrent testing of a selection of 500 influenza B viruses from 2000 to 2006 showed significant variations between seasons in both oseltamivir and zanamivir IC(50) values, but no persistent increases over this period. CONCLUSIONS: Our findings suggested possible low-level transmission of resistant variants from oseltamivir-treated patients in several seasons in Japan but no sustained reductions in NAI susceptibility or consistently increased frequency of detecting resistant variants for any strain or subtype, despite high levels of drug use. In particular, although oseltamivir-resistant A(H1N1) viruses with the H274Y mutation spread globally in 2007-2008, we found little evidence for increasing levels of resistant A(H1N1) variants in Japan in preceding years.


Assuntos
Farmacorresistência Viral , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Influenza Humana/epidemiologia , Influenza Humana/virologia , Neuraminidase/antagonistas & inibidores , Antivirais/farmacologia , Humanos , Japão/epidemiologia , Vigilância de Evento Sentinela
18.
Virology ; 390(1): 13-21, 2009 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-19464724

RESUMO

The wide distribution of H5N1 highly pathogenic avian influenza viruses is a global threat to human health. Indonesia has had the largest number of human infections and fatalities caused by these viruses. To understand the enzootic conditions of the viruses in Indonesia, twenty-four H5N1 viruses isolated from poultry from 2003 to 2007 were phylogenetically characterized. Although previous studies exclusively classified the Indonesian viruses into clades 2.1.1-2.1.3, our phylogenetic analyses showed a new sublineage that did not belong to any of the present clades. In addition, novel reassortant viruses were identified that emerged between this new sublineage and other clades in 2005-2006 on Java Island. H5N1 viruses were introduced from Java Island to Sulawesi, Kalimantan, and Sumatra Island on multiple occasions from 2003-2007, causing the geographical expansion of these viruses in Indonesia. These findings identify Java Island as the epicenter of the Indonesian H5N1 virus expansion.


Assuntos
Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Animais , Evolução Molecular , Genes Virais , Genótipo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Indonésia , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Aves Domésticas/virologia , Fatores de Tempo
19.
Proc Natl Acad Sci U S A ; 105(12): 4639-44, 2008 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-18332436

RESUMO

Planning a response to an outbreak of a pandemic strain of influenza is a high public health priority. Three research groups using different individual-based, stochastic simulation models have examined the consequences of intervention strategies chosen in consultation with U.S. public health workers. The first goal is to simulate the effectiveness of a set of potentially feasible intervention strategies. Combinations called targeted layered containment (TLC) of influenza antiviral treatment and prophylaxis and nonpharmaceutical interventions of quarantine, isolation, school closure, community social distancing, and workplace social distancing are considered. The second goal is to examine the robustness of the results to model assumptions. The comparisons focus on a pandemic outbreak in a population similar to that of Chicago, with approximately 8.6 million people. The simulations suggest that at the expected transmissibility of a pandemic strain, timely implementation of a combination of targeted household antiviral prophylaxis, and social distancing measures could substantially lower the illness attack rate before a highly efficacious vaccine could become available. Timely initiation of measures and school closure play important roles. Because of the current lack of data on which to base such models, further field research is recommended to learn more about the sources of transmission and the effectiveness of social distancing measures in reducing influenza transmission.


Assuntos
Surtos de Doenças/prevenção & controle , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Modelos Biológicos , Chicago , Simulação por Computador , Comportamento Cooperativo , Humanos , Influenza Humana/transmissão , Isolamento de Pacientes , Estados Unidos
20.
Nucleic Acids Res ; 36(Database issue): D497-503, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17965094

RESUMO

The BioHealthBase Bioinformatics Resource Center (BRC) (http://www.biohealthbase.org) is a public bioinformatics database and analysis resource for the study of specific biodefense and public health pathogens-Influenza virus, Francisella tularensis, Mycobacterium tuberculosis, Microsporidia species and ricin toxin. The BioHealthBase serves as an extensive integrated repository of data imported from public databases, data derived from various computational algorithms and information curated from the scientific literature. The goal of the BioHealthBase is to facilitate the development of therapeutics, diagnostics and vaccines by integrating all available data in the context of host-pathogen interactions, thus allowing researchers to understand the root causes of virulence and pathogenicity. Genome and protein annotations can be viewed either as formatted text or graphically through a genome browser. 3D visualization capabilities allow researchers to view proteins with key structural and functional features highlighted. Influenza virus host-pathogen interactions at the molecular/cellular and systemic levels are represented. Host immune response to influenza infection is conveyed through the display of experimentally determined antibody and T-cell epitopes curated from the scientific literature or as derived from computational predictions. At the molecular/cellular level, the BioHealthBase BRC has developed biological pathway representations relevant to influenza virus host-pathogen interaction in collaboration with the Reactome database (http://www.reactome.org).


Assuntos
Bases de Dados Genéticas , Genes Virais , Virus da Influenza A Subtipo H5N1/patogenicidade , Proteínas Virais/química , Animais , Biologia Computacional , Patos/virologia , Genômica , Interações Hospedeiro-Patógeno , Humanos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Internet , Orthomyxoviridae/genética , Orthomyxoviridae/patogenicidade , Conformação Proteica , Alinhamento de Sequência , Análise de Sequência de Proteína , Proteínas Virais/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA