Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biomol NMR Assign ; 17(1): 27-35, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36565355

RESUMO

NOTCH1 is a transmembrane receptor in metazoans that is linked to a variety of disorders. The receptor contains an extracellular domain (ECD) with 36 tandem epidermal growth factor-like (EGF) repeats. The ECD is responsible for intercellular signaling via protein-ligand interactions with neighboring cells. Each EGF repeat consists of approximately 40 amino acids and 3 conserved disulfide bonds. The Abruptex region (EGF24-29) is critical for NOTCH1 signaling and is known for its missense mutations. Certain EGF repeats are modified with the addition of O-linked glycans and many have calcium binding sites, which give each EGF repeat a unique function. It has been shown that the loss of the O-fucose site of EGF27 alters NOTCH1 activity. To investigate the role of glycosylation in the NOTCH1 signaling pathway, nuclear magnetic resonance spectroscopy has been employed to study the structures of EGF27 and its glycoforms. Here, we report the backbone and sidechain 1H, 15N, and 13C-resonance assignments of the unmodified EGF27 protein and the predicted secondary structure derived from the assigned chemical shifts.


Assuntos
Fator de Crescimento Epidérmico , Receptor Notch1 , Animais , Camundongos , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/metabolismo , Receptor Notch1/química , Receptor Notch1/metabolismo , Ressonância Magnética Nuclear Biomolecular , Glicosilação , Sítios de Ligação
2.
Biomolecules ; 10(11)2020 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114427

RESUMO

Scc4 is an unusual bi-functional protein from Chlamydia trachomatis (CT) that functions as a type III secretion system (T3SS) chaperone and an RNA polymerase (RNAP)-binding protein. Both functions require interactions with protein partners during specific stages of the CT developmental cycle. As a T3SS chaperone, Scc4 binds Scc1 during the late stage of development to form a heterodimer complex, which chaperones the essential virulence effector, CopN. During the early-middle stage of development, Scc4 regulates T3SS gene expression by binding the σ66-containing RNAP holoenzyme. In order to study the structure and association mechanism of the Scc4:Scc1 T3SS chaperone complex using nuclear magnetic resonance (NMR) spectroscopy, we developed an approach to selectively label each chain of the Scc4:Scc1 complex with the 15N-isotope. The approach allowed one protein to be visible in the NMR spectrum at a time, which greatly reduced resonance overlap and permitted comparison of the backbone structures of free and bound Scc4. 1H,15N-heteronuclear single quantum coherence spectra of the 15N-Scc4:Scc1 and Scc4:15N-Scc1 complexes showed a total structural rearrangement of Scc4 upon binding Scc1 and a dynamic region isolated to Scc1, respectively. Development of the chain-selective labeling approach revealed that the association of Scc4 and Scc1 requires partial denaturation of Scc1 to form the high affinity complex, while low affinity interactions occurred between the isolated proteins under non-denaturing conditions. These results provide new models for Scc4's functional switching mechanism and Scc4:Scc1 association in CT.


Assuntos
Proteínas de Bactérias/química , Chlamydia trachomatis/química , Marcação por Isótopo , Chaperonas Moleculares/química , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/metabolismo , Chaperonas Moleculares/metabolismo , Ligação Proteica
3.
Biomol NMR Assign ; 14(2): 301-307, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32617786

RESUMO

Chlamydia trachomatis is an obligate intracellular bacterium that causes the most common sexually transmitted bacterial diseases in the world. With a biphasic developmental cycle, the bacteria utilize a type III secretion system (T3SS) to invade host cells as infectious elemental bodies, which then differentiate into actively dividing reticulate bodies. The regulation of the developmental cycle and the T3SS are linked by the bi-functional protein, specific Chlamydia chaperone 4 (Scc4). Scc4 is a class I T3SS chaperone forming a heterodimer with specific Chlamydia chaperone 1 (Scc1) to chaperone the essential virulence effector, Chlamydia outer membrane protein N. Scc4 also functions as a transcription factor by binding to the RNA polymerase holoenzyme between the flap region of the ß subunit and region 4 of σ66. In order to investigate the mechanism behind Scc4's dual functions and target its protein-protein interactions as a route for drug development, the structure and dynamics of Scc4 are being pursued. In the course of this effort, we assigned 89.2% of the backbone and sidechain 1H, 15N, and 13C resonances of full-length Scc4. The assigned chemical shifts were used to predict the secondary structure and dynamic properties. The type and order of Scc4's determined secondary structure are consistent with the X-ray crystal structures of other bacterial T3SS chaperones.


Assuntos
Proteínas de Bactérias/análise , Proteínas de Bactérias/química , Chlamydia trachomatis/metabolismo , Ressonância Magnética Nuclear Biomolecular , Isótopos de Nitrogênio , Estrutura Secundária de Proteína , Espectroscopia de Prótons por Ressonância Magnética , Homologia Estrutural de Proteína
4.
Protein Expr Purif ; 174: 105681, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32505675

RESUMO

Notch receptors have large extracellular domains containing up to 36 tandem epidermal growth factor-like (EGF) repeats, which facilitate cell signaling by binding ligands on neighboring cells. Notch receptors play major roles in a variety of developmental processes by controlling cell fate decisions. Each EGF repeat consists of about 40 amino acids with 3 conserved disulfide bonds. Many of the EGF repeats are modified by O-linked fucose glycans, and more than half have calcium-binding sites, but the sequences of the EGF repeats vary giving distinct roles to each repeat. EGF repeat 27 (EGF27) from mouse NOTCH1 is modified with O-fucose and is 1 of 7 repeats that is differentially modified by specific Fringe enzymes, which are known to regulate NOTCH1 activation and ligand binding. To better understand the role of EGF27 in NOTCH1 function and regulation, the 3-dimensional structures of EGF27 and its glycoforms are being pursued. E. coli cells were used to produce EGF27 in sufficient quantities for nuclear magnetic resonance analysis. Previous attempts to express the repeat alone and refold the repeat under a steady redox environment were unsuccessful due to low yields and extensive mixed-disulfide bond cross-linking. A new strategy using a cleavable maltose binding protein fusion tag increased the solubility and yield of EGF27. With the fusion tag, EGF27 was refolded to produce the correct disulfide bond arrangement, which was verified enzymatically with the glycosyltransferases, Protein O-fucosyltransferase 1 (POFUT1) and Lunatic Fringe (LFNG).


Assuntos
Fucose , Biossíntese Peptídica , Peptídeos , Receptor Notch1 , Animais , Fucose/química , Fucose/metabolismo , Glicosilação , Camundongos , Peptídeos/química , Peptídeos/genética , Receptor Notch1/biossíntese , Receptor Notch1/química , Receptor Notch1/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Sequências Repetitivas de Aminoácidos
5.
J Bacteriol ; 202(15)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32424009

RESUMO

Chlamydia trachomatis Scc4 (formerly CT663) engages the transcription machinery and the pathogenic type III secretion system (T3SS). Both machines are required for Chlamydia infection. These requirements and the limited ability for genetic manipulation in Chlamydia have hampered dissection of Scc4's contributions. Here, by developing bacterial systems that permit the controlled expression and stable maintenance of Scc4, we assess Scc4's effects on chlamydial growth phenotype, secretion, and the patterns of T3SS gene expression. Expressing Scc4 in Escherichia coli lacking a T3SS injectisome causes a growth defect. This deficiency is rescued by overexpressing the ß-subunit of RNA polymerase (RNAP) or by exploiting sigma 70 (σ70) (homologous to chlamydial σ66) mutants that strengthen the interaction between σ70 region 4 and the ß-flap, confirming Scc4's distinction as a module of RNAP holoenzyme capable of modulating transcription. Yersinia pestis expressing Scc4 sustains a functional T3SS, through which CopN secretion is boosted by cooption of Scc4 and Scc1. Finally, conditional expression of Scc4 in C. trachomatis results in fast expansion of the Chlamydia-containing vacuole and accelerated chlamydial development, coupled to selective up- or downregulation of gene expression from different T3SS genes. This work reveals, for the first time, the context-dependent action of Scc4 linking it to diverse protein networks in bacteria. It establishes that Scc4, when overexpressed, exerts incredible effects on chlamydial development by reinforcing control of the T3SS.IMPORTANCE The T3SS is a key virulence factor required for C. trachomatis infection. The control of the T3SS has not been well studied in this obligate intracellular pathogen. Here, we show that Scc4 plays a major role for precise control of the pathogenic T3SS at the levels of gene expression and effector secretion through genetically separable protein networks, allowing a fast adaptive mode of C. trachomatis development during infection in human epithelial cells.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/genética , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/genética , Chlamydia trachomatis/crescimento & desenvolvimento , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Transporte Proteico , Fator sigma/genética , Fator sigma/metabolismo , Sistemas de Secreção Tipo III/genética
6.
Biochemistry ; 58(42): 4284-4292, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31545893

RESUMO

Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes the most common sexually transmitted bacterial disease in the world. The bacterium has a unique biphasic developmental cycle with a type III secretion system (T3SS) to invade host cells. Scc4 is a class I T3SS chaperone forming a heterodimer complex with Scc1 to chaperone the essential virulence effector, CopN. Scc4 also functions as an RNA polymerase binding protein to regulate σ66-dependent transcription. Aggregation and low solubility of 6X-histidine-tagged Scc4 and the insolubility of 6X-histidine and FLAG-tagged Scc1 expressed in Escherichia coli have hindered the high-resolution nuclear magnetic resonance (NMR) structure determination of these proteins and motivated the development of an on-column complex dissociation method to produce tag-free Scc4 and soluble FLAG-tagged Scc1. By utilizing a 6X-histidine-tag on one protein, the coexpressed Scc4-Scc1 complex was captured on nickel-charged immobilized metal affinity chromatography resin, and the nondenaturing detergent, sodium N-lauroylsarcosine (sarkosyl), was used to dissociate and elute the non-6X-histidine-tagged protein. Tag-free Scc4 was produced in a higher yield and had better NMR spectral characteristics compared to 6X-histidine-tagged Scc4, and soluble FLAG-tagged Scc1 was purified for the first time in a high yield. The backbone structure of Scc4 after exposure to sarkosyl was validated using NMR spectroscopy, demonstrating the usefulness of the method to produce proteins for structural and functional studies. The sarkosyl-assisted on-column complex dissociation method is generally applicable to protein complexes with high affinity and is particularly useful when affinity tags alter the protein's biophysical properties or when coexpression is necessary for solubility.


Assuntos
Proteínas de Bactérias/química , Chlamydia trachomatis/química , Cromatografia de Afinidade/métodos , Chaperonas Moleculares/química , Sarcosina/análogos & derivados , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/metabolismo , Histidina/química , Espectroscopia de Ressonância Magnética , Chaperonas Moleculares/metabolismo , Plasmídeos/genética , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sarcosina/química , Sarcosina/metabolismo , Solubilidade
7.
PLoS One ; 13(6): e0199686, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29953505

RESUMO

Peptides that exhibit enzymatic or hormonal activities are regulatory factors and desirable therapeutic drugs because of their high target specificity and minimal side effects. Unfortunately, these drugs are susceptible to enzymatic degradation, leading to their rapid elimination and thereby demanding frequent dosage. Structurally modified forms of some peptide drugs have shown enhanced pharmacokinetics, improving their oral bioavailability. Here, we discuss a novel glycomimetic approach to modify lysine residues in peptides. In a model system, the ε-amine of Ts-Lys-OMe was reductively alkylated with a glucose derivative to afford a dihydroxylated piperidine in place of the amine. A similar modification was applied to H-KPV-NH2, a tripeptide derived from the α-melanocyte stimulating hormone (α-MSH) reported to have antimicrobial and anti-inflammatory properties. Antimicrobial assays, under a variety of conditions, showed no activity for Ac-KPV-NH2 or the α- or ε-glycoalkylated analogs. Glycoalkylated peptides did, however, show stability toward proteolytic enzymes.


Assuntos
Lisina/química , Oligopeptídeos/química , Oligopeptídeos/síntese química , alfa-MSH/química
8.
J Biol Chem ; 290(47): 28141-28155, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26438824

RESUMO

Secretion of effector proteins into the eukaryotic host cell is required for Chlamydia trachomatis virulence. In the infection process, Scc1 and Scc4, two chaperones of the type III secretion (T3S) system, facilitate secretion of the important effector and plug protein, CopN, but little is known about the details of this event. Here we use biochemistry, mass spectrometry, nuclear magnetic resonance spectroscopy, and genetic analyses to characterize this trimolecular event. We find that Scc4 complexes with Scc1 and CopN in situ at the late developmental cycle of C. trachomatis. We show that Scc4 and Scc1 undergo dynamic interactions as part of the unique bacterial developmental cycle. Using alanine substitutions, we identify several amino acid residues in Scc4 that are critical for the Scc4-Scc1 interaction, which is required for forming the Scc4·Scc1·CopN ternary complex. These results, combined with our previous findings that Scc4 plays a role in transcription (Rao, X., Deighan, P., Hua, Z., Hu, X., Wang, J., Luo, M., Wang, J., Liang, Y., Zhong, G., Hochschild, A., and Shen, L. (2009) Genes Dev. 23, 1818-1829), reveal that the T3S process is linked to bacterial transcriptional events, all of which are mediated by Scc4 and its interacting proteins. A model describing how the T3S process may affect gene expression is proposed.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/metabolismo , Chaperonas Moleculares/metabolismo , Escherichia coli/metabolismo , Células HeLa , Humanos , Solubilidade
9.
Anal Biochem ; 491: 43-51, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26342307

RESUMO

Colorimetric protein assays, such as the Coomassie blue G-250 dye-binding (Bradford) and bicinchoninic acid (BCA) assays, are commonly used to quantify protein concentration. The accuracy of these assays depends on the amino acid composition. Because of the extensive use of reductive methylation in the study of proteins and the importance of biological methylation, it is necessary to evaluate the impact of lysyl methylation on the Bradford and BCA assays. Unmodified and reductively methylated proteins were analyzed using the absorbance at 280 nm to standardize the concentrations. Using model compounds, we demonstrate that the dimethylation of lysyl ε-amines does not affect the proteins' molar extinction coefficients at 280 nm. For the Bradford assay, the responses (absorbance per unit concentration) of the unmodified and reductively methylated proteins were similar, with a slight decrease in the response upon methylation. For the BCA assay, the responses of the reductively methylated proteins were consistently higher, overestimating the concentrations of the methylated proteins. The enhanced color formation in the BCA assay may be due to the lower acid dissociation constants of the lysyl ε-dimethylamines compared with the unmodified ε-amine, favoring Cu(II) binding in biuret-like complexes. The implications for the analysis of biologically methylated samples are discussed.


Assuntos
Colorimetria , Proteínas/análise , Animais , Bovinos , Metilação , Proteínas/química , Quinolinas/química , Corantes de Rosanilina/química , Soroalbumina Bovina/análise , Soroalbumina Bovina/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
PLoS One ; 10(5): e0125376, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25978745

RESUMO

Coptotermes formosanus is an imported, subterranean termite species with the largest economic impact in the United States. The frontal glands of the soldier caste termites comprising one third of the body mass, contain a secretion expelled through a foramen in defense. The small molecule composition of the frontal gland secretion is well-characterized, but the proteins remain to be identified. Herein is reported the structure and function of one of several proteins found in the termite defense gland secretion. TFP4 is a 6.9 kDa, non-classical group 1 Kazal-type serine protease inhibitor with activity towards chymotrypsin and elastase, but not trypsin. The 3-dimensional solution structure of TFP4 was solved with nuclear magnetic resonance spectroscopy, and represents the first structure from the taxonomic family, Rhinotermitidae. Based on the structure of TFP4, the protease inhibitor active loop (Cys(8) to Cys(16)) was identified.


Assuntos
Isópteros/química , Inibidores de Serina Proteinase/química , Animais , Sequência de Bases , DNA Complementar/genética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular
11.
Plant Cell Environ ; 38(10): 2012-22, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25754174

RESUMO

Members of the Pht1 family of plant phosphate (Pi) transporters play vital roles in Pi acquisition from soil and in planta Pi translocation to maintain optimal growth and development. The study of the specificities and biochemical properties of Pht1 transporters will contribute to improving the current understanding of plant phosphorus homeostasis and use-efficiency. In this study, we show through split in vivo interaction methods and in vitro analysis of microsomal root tissues that Arabidopsis thaliana Pht1;1 and Pht1;4 form homomeric and heteromeric complexes. Transient and heterologous expression of the Pht1;1 variants, Pht1;1(Y312D), Pht1;1(Y312A) and Pht1;1(Y312F), was used to analyse the role of a putative Pi binding residue (Tyr 312) in Pht1;1 transporter oligomerization and function. The homomeric interaction among Pht1;1 proteins was disrupted by mutation of Tyr 312 to Asp, but not to Ala or Phe. In addition, the Pht1;1(Y312D) variant conferred enhanced Pi transport when expressed in yeast cells. In contrast, mutation of Tyr 312 to Ala or Phe did not affect Pht1;1 transport kinetics. Our study demonstrates that modifications to the Pht1;1 higher-order structure affects Pi transport, suggesting that oligomerization may serve as a regulatory mechanism for modulating Pi uptake.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Homeostase , Mutagênese Sítio-Dirigida , Mutação , Proteínas de Transporte de Fosfato/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Multimerização Proteica , Tirosina/genética
12.
Anal Biochem ; 466: 76-82, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25175010

RESUMO

Reductive methylation of lysyl side-chain amines has been a successful tool in the advancement of high-resolution structural biology. The utility of this method has continuously gained ground as a protein chemical modification, first as a tool to aid protein crystallization and later as a probe in protein nuclear magnetic resonance (NMR) spectroscopy. As an isotope-labeling strategy for NMR studies, reductive methylation has contributed to the study of protein-protein interactions and global conformational changes. Although more detailed structural studies using this labeling strategy are possible, the hurdle of assigning the NMR peaks to the corresponding reductively methylated amine hinders its use. In this review, we discuss and compare strategies used to assign the NMR peaks of reductively methylated protein amines.


Assuntos
Técnicas de Química Analítica/métodos , Espectroscopia de Ressonância Magnética , Proteínas/química , Metilação , Modelos Moleculares , Oxirredução
13.
J Biotechnol ; 168(4): 315-23, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24140293

RESUMO

The O-linked ß-N-acetylglucosamine (O-GlcNAc) post-translational modification is an important, regulatory modification of cytosolic and nuclear enzymes. To date, no 3-dimensional structures of O-GlcNAc-modified proteins exist due to difficulties in producing sufficient quantities with either in vitro or in vivo techniques. Recombinant co-expression of substrate protein and O-GlcNAc transferase in Escherichia coli was used to produce O-GlcNAc-modified domains of human cAMP responsive element-binding protein (CREB1) and Abelson tyrosine-kinase 2 (ABL2). Recombinant expression in E. coli is an advantageous approach, but only small quantities of insoluble O-GlcNAc-modified protein were produced. Adding ß-N-acetylglucosaminidase inhibitor, O-(2-acetamido-2-dexoy-D-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc), to the culture media provided the first evidence that an E. coli enzyme cleaves O-GlcNAc from proteins in vivo. With the inhibitor present, the yields of O-GlcNAc-modified protein increased. The E. coli ß-N-acetylglucosaminidase was isolated and shown to cleave O-GlcNAc from a synthetic O-GlcNAc-peptide in vitro. The identity of the interfering ß-N-acetylglucosaminidase was confirmed by testing a nagZ knockout strain. In E. coli, NagZ natively cleaves the GlcNAc-ß1,4-N-acetylmuramic acid linkage to recycle peptidoglycan in the cytoplasm and cleaves the GlcNAc-ß-O-linkage of foreign O-GlcNAc-modified proteins in vivo, sabotaging the recombinant co-expression system.


Assuntos
Acetilglucosamina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Escherichia coli/genética , N-Acetilglucosaminiltransferases/genética , Proteínas Tirosina Quinases/metabolismo , Acetilglucosamina/análogos & derivados , Acetilglucosamina/farmacologia , Acetilglucosaminidase/química , Acetilglucosaminidase/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Citosol/metabolismo , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glicosilação , Humanos , N-Acetilglucosaminiltransferases/metabolismo , Oximas/farmacologia , Peptídeos/síntese química , Peptídeos/farmacologia , Fenilcarbamatos/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Tirosina Quinases/genética
14.
Anal Biochem ; 443(2): 156-65, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24044992

RESUMO

Actin is a multifunctional eukaryotic protein with a globular monomer form that polymerizes into a thin, linear microfilament in cells. Through interactions with various actin-binding proteins (ABPs), actin plays an active role in many cellular processes, such as cell motility and structure. Microscopy techniques are powerful tools for determining the role and mechanism of actin-ABP interactions in these processes. In this article, we describe the basic concepts of fluorescent speckle microscopy, total internal reflection fluorescence microscopy, atomic force microscopy, and cryoelectron microscopy and review recent studies that utilize these techniques to visualize the binding of actin with ABPs.


Assuntos
Actinas/metabolismo , Actinas/ultraestrutura , Microscopia Crioeletrônica/métodos , Microscopia de Força Atômica/métodos , Microscopia de Fluorescência/métodos , Mapeamento de Interação de Proteínas/métodos , Animais , Humanos , Modelos Moleculares , Miosinas/metabolismo , Miosinas/ultraestrutura
15.
J Vis Exp ; (82): e50875, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24378713

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy is a proven technique for protein structure and dynamic studies. To study proteins with NMR, stable magnetic isotopes are typically incorporated metabolically to improve the sensitivity and allow for sequential resonance assignment. Reductive (13)C-methylation is an alternative labeling method for proteins that are not amenable to bacterial host over-expression, the most common method of isotope incorporation. Reductive (13)C-methylation is a chemical reaction performed under mild conditions that modifies a protein's primary amino groups (lysine ε-amino groups and the N-terminal α-amino group) to (13)C-dimethylamino groups. The structure and function of most proteins are not altered by the modification, making it a viable alternative to metabolic labeling. Because reductive (13)C-methylation adds sparse, isotopic labels, traditional methods of assigning the NMR signals are not applicable. An alternative assignment method using mass spectrometry (MS) to aid in the assignment of protein (13)C-dimethylamine NMR signals has been developed. The method relies on partial and different amounts of (13)C-labeling at each primary amino group. One limitation of the method arises when the protein's N-terminal residue is a lysine because the α- and ε-dimethylamino groups of Lys1 cannot be individually measured with MS. To circumvent this limitation, two methods are described to identify the NMR resonance of the (13)C-dimethylamines associated with both the N-terminal α-amine and the side chain ε-amine. The NMR signals of the N-terminal α-dimethylamine and the side chain ε-dimethylamine of hen egg white lysozyme, Lys1, are identified in (1)H-(13)C heteronuclear single-quantum coherence spectra.


Assuntos
Dimetilaminas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Animais , Isótopos de Carbono , Galinhas , Marcação por Isótopo , Metilação , Muramidase/química
16.
Anal Chim Acta ; 749: 63-9, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23036468

RESUMO

The acid dissociation constant (pK(a)) of small, biological molecules is an important physical property used for investigating enzyme mechanisms and inhibitor design. For phosphorus-containing molecules, the (31)P nuclear magnetic resonance (NMR) chemical shift is sensitive to the local chemical environment, particularly to changes in the electronic state of the molecule. Taking advantage of this property, we present a (31)P NMR approach that uses inorganic phosphate buffer as an internal pH reference to determine the pK(a) values of the imide and second diphosphate of uridine-5'-diphosphate compounds, including the first reported values for UDP-GlcNAc and UDP-S-GlcNAc. New methods for using inorganic phosphate buffer as an internal pH reference, involving mathematical correction factors and careful control of the chemical shift reference sample, are illustrated. A comparison of the newly determined imide and diphosphate pK(a) values of UDP, UDP-GlcNAc, and UDP-S-GlcNAc with other nucleotide phosphate and thio-analogs reveals the significance of the monosaccharide and sulfur position on the pK(a) values.


Assuntos
Ácidos/química , Espectroscopia de Ressonância Magnética , Difosfato de Uridina/química , Concentração de Íons de Hidrogênio , Cinética , Fósforo/química , Uridina Difosfato N-Acetilglicosamina/química
17.
Nat Chem Biol ; 8(12): 969-74, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23103942

RESUMO

Protein O-GlcNAcylation is an essential post-translational modification on hundreds of intracellular proteins in metazoa, catalyzed by O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) using unknown mechanisms of transfer and substrate recognition. Through crystallographic snapshots and mechanism-inspired chemical probes, we define how human OGT recognizes the sugar donor and acceptor peptide and uses a new catalytic mechanism of glycosyl transfer, involving the sugar donor α-phosphate as the catalytic base as well as an essential lysine. This mechanism seems to be a unique evolutionary solution to the spatial constraints imposed by a bulky protein acceptor substrate and explains the unexpected specificity of a recently reported metabolic OGT inhibitor.


Assuntos
Difosfatos/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Nucleotídeos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Humanos , Cinética , Lisina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fosfatos/metabolismo , Ligação Proteica , Conformação Proteica , Processamento de Proteína Pós-Traducional , Estereoisomerismo , Especificidade por Substrato , Ressonância de Plasmônio de Superfície , Uridina Difosfato Galactose/metabolismo
18.
Proc Natl Acad Sci U S A ; 108(40): 16600-5, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21949356

RESUMO

Mutations in rumi result in a temperature-sensitive loss of Notch signaling in Drosophila. Drosophila Rumi is a soluble, endoplasmic reticulum-retained protein with a CAP10 domain that functions as a protein O-glucosyltransferase. In human and mouse genomes, three potential Rumi homologues exist: one with a high degree of identity to Drosophila Rumi (52%), and two others with lower degrees of identity but including a CAP10 domain (KDELC1 and KDELC2). Here we show that both mouse and human Rumi, but not KDELC1 or KDELC2, catalyze transfer of glucose from UDP-glucose to an EGF repeat from human factor VII. Similarly, human Rumi, but not KDELC1 or KDELC2, rescues the Notch phenotypes in Drosophila rumi clones. During characterization of the Rumi enzymes, we noted that, in addition to protein O-glucosyltransferase activity, both mammalian and Drosophila Rumi also showed significant protein O-xylosyltransferase activity. Rumi transfers Xyl or glucose to serine 52 in the O-glucose consensus sequence ( ) of factor VII EGF repeat. Surprisingly, the second serine (S53) facilitates transfer of Xyl, but not glucose, to the EGF repeat by Rumi. EGF16 of mouse Notch2, which has a diserine motif in the consensus sequence ( ), is also modified with either O-Xyl or O-glucose glycans in cells. Mutation of the second serine (S590A) causes a loss of O-Xyl but not O-glucose at this site. Altogether, our data establish dual substrate specificity for the glycosyltransferase Rumi and provide evidence that amino acid sequences of the recipient EGF repeat significantly influence which donor substrate (UDP-glucose or UDP-Xyl) is used.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Fator VII/metabolismo , Glucosiltransferases/metabolismo , Pentosiltransferases/metabolismo , Transdução de Sinais/fisiologia , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Fator VII/genética , Glucosiltransferases/genética , Humanos , Espectrometria de Massas , Camundongos , Mutação/genética , Transdução de Sinais/genética , Especificidade por Substrato , UDP Xilose-Proteína Xilosiltransferase
19.
Protein Sci ; 19(9): 1673-85, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20589905

RESUMO

The traditional NMR-based method for determining oligomeric protein structure usually involves distinguishing and assigning intra- and intersubunit NOEs. This task becomes challenging when determining symmetric homo-dimer structures because NOE cross-peaks from a given pair of protons occur at the same position whether intra- or intersubunit in origin. While there are isotope-filtering strategies for distinguishing intra from intermolecular NOE interactions in these cases, they are laborious and often prove ineffectual in cases of weak dimers, where observation of intermolecular NOEs is rare. Here, we present an efficient procedure for weak dimer structure determination based on residual dipolar couplings (RDCs), chemical shift changes upon dilution, and paramagnetic surface perturbations. This procedure is applied to the Northeast Structural Genomics Consortium protein target, SeR13, a negatively charged Staphylococcus epidermidis dimeric protein (K(d) 3.4 ± 1.4 mM) composed of 86 amino acids. A structure determination for the monomeric form using traditional NMR methods is presented, followed by a dimer structure determination using docking under orientation constraints from RDCs data, and scoring under residue pair potentials and shape-based predictions of RDCs. Validation using paramagnetic surface perturbation and chemical shift perturbation data acquired on sample dilution is also presented. The general utility of the dimer structure determination procedure and the possible relevance of SeR13 dimer formation are discussed.


Assuntos
Proteínas de Bactérias/química , Ressonância Magnética Nuclear Biomolecular/métodos , Staphylococcus epidermidis/química , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
20.
J Am Chem Soc ; 130(36): 11864-5, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18700760

RESUMO

Glycans that are either N-linked to asparagine or O-linked to serine or threonine are the hallmark of glycoproteins, a class of protein that dominates the mammalian proteome. These glycans perform important functions in cells and in some cases are required for protein activity. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for studying glycan structure and interactions, particularly in a form that exploits heteronuclei such as 13C. Here an approach is presented that that uses alpha-2,6-sialyltransferase (ST6Gal-I) to enzymatically add 13C-N-acetylneuraminic acid (NeuAc or sialic acid) to glycoproteins after their preparation using nonbacterial hosts. ST6Gal-I is itself a glycoprotein, and in this initial application, labeling of its own glycans and observation of these glycans by NMR are illustrated. The catalytic domain from rat ST6Gal-I was expressed in mammalian HEK293 cells. The glycans from the two glycosylation sites were analyzed with mass spectrometry and found to contain sialylated biantennary structures. The isotopic labeling approach involved removal of the native NeuAc residues from ST6Gal-I with neuraminidase, separation of the neuramindase with a lectin affinity column, and addition of synthesized 13C-CMP-NeuAc to the desialylated ST6Gal-I. Chemical shift dispersion due to the various 13C-NeuAc adducts on ST6Gal-I was observed in a 3D experiment correlating 1H-13C3-13C2 atoms of the sugar ring.


Assuntos
Glicoproteínas/química , Ácido N-Acetilneuramínico/química , Polissacarídeos/química , Sialiltransferases/química , Isótopos de Carbono , Glicoproteínas/síntese química , Marcação por Isótopo/métodos , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos/síntese química , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA