Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Surg Endosc ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009730

RESUMO

BACKGROUND: Gaming can serve as an educational tool to allow trainees to practice surgical decision-making in a low-stakes environment. LapBot is a novel free interactive mobile game application that uses artificial intelligence (AI) to provide players with feedback on safe dissection during laparoscopic cholecystectomy (LC). This study aims to provide validity evidence for this mobile game. METHODS: Trainees and surgeons participated by downloading and playing LapBot on their smartphone. Players were presented with intraoperative LC scenes and required to locate their preferred location of dissection of the hepatocystic triangle. They received immediate accuracy scores and personalized feedback using an AI algorithm ("GoNoGoNet") that identifies safe/dangerous zones of dissection. Player scores were assessed globally and across training experience using non-parametric ANOVA. Three-month questionnaires were administered to assess the educational value of LapBot. RESULTS: A total of 903 participants from 64 countries played LapBot. As game difficulty increased, average scores (p < 0.0001) and confidence levels (p < 0.0001) decreased significantly. Scores were significantly positively correlated with players' case volume (p = 0.0002) and training level (p = 0.0003). Most agreed that LapBot should be incorporated as an adjunct into training programs (64.1%), as it improved their ability to reflect critically on feedback they receive during LC (47.5%) or while watching others perform LC (57.5%). CONCLUSIONS: Serious games, such as LapBot, can be effective educational tools for deliberate practice and surgical coaching by promoting learner engagement and experiential learning. Our study demonstrates that players' scores were correlated to their level of expertise, and that after playing the game, most players perceived a significant educational value.

2.
JMIR Form Res ; 8: e52878, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052314

RESUMO

BACKGROUND:  Major bile duct injuries during laparoscopic cholecystectomy (LC), often stemming from errors in surgical judgment and visual misperception of critical anatomy, significantly impact morbidity, mortality, disability, and health care costs. OBJECTIVE:  To enhance safe LC learning, we developed an educational mobile game, LapBot Safe Chole, which uses an artificial intelligence (AI) model to provide real-time coaching and feedback, improving intraoperative decision-making. METHODS:  LapBot Safe Chole offers a free, accessible simulated learning experience with real-time AI feedback. Players engage with intraoperative LC scenarios (short video clips) and identify ideal dissection zones. After the response, users receive an accuracy score from a validated AI algorithm. The game consists of 5 levels of increasing difficulty based on the Parkland grading scale for cholecystitis. RESULTS:  Beta testing (n=29) showed score improvements with each round, with attendings and senior trainees achieving top scores faster than junior residents. Learning curves and progression distinguished candidates, with a significant association between user level and scores (P=.003). Players found LapBot enjoyable and educational. CONCLUSIONS:  LapBot Safe Chole effectively integrates safe LC principles into a fun, accessible, and educational game using AI-generated feedback. Initial beta testing supports the validity of the assessment scores and suggests high adoption and engagement potential among surgical trainees.

5.
Surg Endosc ; 38(8): 4633-4640, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38913120

RESUMO

INTRODUCTION: Communication is fundamental to effective surgical coaching. This can be challenging for training during image-guided procedures where coaches and trainees need to articulate technical details on a monitor. Telestration devices that annotate on monitors remotely could potentially overcome these limitations and enhance the coaching experience. This study aims to evaluate the value of a novel telestration device in surgical coaching. METHODS: A randomized-controlled trial was designed. All participants watched a video demonstrating the task followed by a baseline performance assessment and randomization into either control group (conventional verbal coaching without telestration) or telestration group (verbal coaching with telestration). Coaching for a simulated laparoscopic small bowel anastomosis on a dry lab model was done by a faculty surgeon. Following the coaching session, participants underwent a post-coaching performance assessment of the same task. Assessments were recorded and rated by blinded reviewers using a modified Global Rating Scale of the Objective Structured Assessment of Technical Skills (OSATS). Coaching sessions were also recorded and compared in terms of mentoring moments; guidance misinterpretations, questions/clarifications by trainees, and task completion time. A 5-point Likert scale was administered to obtain feedback. RESULTS: Twenty-four residents participated (control group 13, telestration group 11). Improvements in some elements of the OSATS scale were noted in the Telestration arm but there was no statistical significance in the overall score between the two groups. Mentoring moments were more in the telestration Group. Amongst the telestration Group, 55% felt comfortable that they could perform this task independently, compared to only 8% amongst the control group and 82% would recommend the use of telestration tools here. CONCLUSION: There is demonstrated educational value of this novel telestration device mainly in the non-technical aspects of the interaction by enhancing the coaching experience with improvement in communication and greater mentoring moments between coach and trainee.


Assuntos
Competência Clínica , Internato e Residência , Tutoria , Humanos , Tutoria/métodos , Internato e Residência/métodos , Masculino , Feminino , Laparoscopia/educação , Adulto , Anastomose Cirúrgica/educação , Treinamento por Simulação/métodos , Intestino Delgado/cirurgia
6.
Surg Endosc ; 38(6): 3241-3252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653899

RESUMO

BACKGROUND: The learning curve in minimally invasive surgery (MIS) is lengthened compared to open surgery. It has been reported that structured feedback and training in teams of two trainees improves MIS training and MIS performance. Annotation of surgical images and videos may prove beneficial for surgical training. This study investigated whether structured feedback and video debriefing, including annotation of critical view of safety (CVS), have beneficial learning effects in a predefined, multi-modal MIS training curriculum in teams of two trainees. METHODS: This randomized-controlled single-center study included medical students without MIS experience (n = 80). The participants first completed a standardized and structured multi-modal MIS training curriculum. They were then randomly divided into two groups (n = 40 each), and four laparoscopic cholecystectomies (LCs) were performed on ex-vivo porcine livers each. Students in the intervention group received structured feedback after each LC, consisting of LC performance evaluations through tutor-trainee joint video debriefing and CVS video annotation. Performance was evaluated using global and LC-specific Objective Structured Assessments of Technical Skills (OSATS) and Global Operative Assessment of Laparoscopic Skills (GOALS) scores. RESULTS: The participants in the intervention group had higher global and LC-specific OSATS as well as global and LC-specific GOALS scores than the participants in the control group (25.5 ± 7.3 vs. 23.4 ± 5.1, p = 0.003; 47.6 ± 12.9 vs. 36 ± 12.8, p < 0.001; 17.5 ± 4.4 vs. 16 ± 3.8, p < 0.001; 6.6 ± 2.3 vs. 5.9 ± 2.1, p = 0.005). The intervention group achieved CVS more often than the control group (1. LC: 20 vs. 10 participants, p = 0.037, 2. LC: 24 vs. 8, p = 0.001, 3. LC: 31 vs. 8, p < 0.001, 4. LC: 31 vs. 10, p < 0.001). CONCLUSIONS: Structured feedback and video debriefing with CVS annotation improves CVS achievement and ex-vivo porcine LC training performance based on OSATS and GOALS scores.


Assuntos
Colecistectomia Laparoscópica , Competência Clínica , Gravação em Vídeo , Colecistectomia Laparoscópica/educação , Humanos , Suínos , Animais , Feminino , Masculino , Curva de Aprendizado , Currículo , Adulto , Estudantes de Medicina , Feedback Formativo , Adulto Jovem , Retroalimentação
7.
Nat Methods ; 21(2): 182-194, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38347140

RESUMO

Validation metrics are key for tracking scientific progress and bridging the current chasm between artificial intelligence research and its translation into practice. However, increasing evidence shows that, particularly in image analysis, metrics are often chosen inadequately. Although taking into account the individual strengths, weaknesses and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multistage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides a reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Although focused on biomedical image analysis, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. The work serves to enhance global comprehension of a key topic in image analysis validation.


Assuntos
Inteligência Artificial
8.
Eur J Surg Oncol ; : 108014, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38360498

RESUMO

With increasing growth in applications of artificial intelligence (AI) in surgery, it has become essential for surgeons to gain a foundation of knowledge to critically appraise the scientific literature, commercial claims regarding products, and regulatory and legal frameworks that govern the development and use of AI. This guide offers surgeons a framework with which to evaluate manuscripts that incorporate the use of AI. It provides a glossary of common terms, an overview of prerequisite knowledge to maximize understanding of methodology, and recommendations on how to carefully consider each element of a manuscript to assess the quality of the data on which an algorithm was trained, the appropriateness of the methodological approach, the potential for reproducibility of the experiment, and the applicability to surgical practice, including considerations on generalizability and scalability.

9.
Nat Methods ; 21(2): 195-212, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38347141

RESUMO

Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint-a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Semântica
10.
Surg Endosc ; 38(2): 475-487, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38180541

RESUMO

BACKGROUND: Digital surgery is a new paradigm within the surgical innovation space that is rapidly advancing and encompasses multiple areas. METHODS: This white paper from the SAGES Digital Surgery Working Group outlines the scope of digital surgery, defines key terms, and analyzes the challenges and opportunities surrounding this disruptive technology. RESULTS: In its simplest form, digital surgery inserts a computer interface between surgeon and patient. We divide the digital surgery space into the following elements: advanced visualization, enhanced instrumentation, data capture, data analytics with artificial intelligence/machine learning, connectivity via telepresence, and robotic surgical platforms. We will define each area, describe specific terminology, review current advances as well as discuss limitations and opportunities for future growth. CONCLUSION: Digital Surgery will continue to evolve and has great potential to bring value to all levels of the healthcare system. The surgical community has an essential role in understanding, developing, and guiding this emerging field.


Assuntos
Procedimentos Cirúrgicos Robóticos , Cirurgiões , Humanos , Inteligência Artificial , Aprendizado de Máquina , Previsões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA