Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928178

RESUMO

Physiology and behavior are structured temporally to anticipate daily cycles of light and dark, ensuring fitness and survival. Neuromodulatory systems in the brain-including those involving serotonin and dopamine-exhibit daily oscillations in neural activity and help shape circadian rhythms. Disrupted neuromodulation can cause circadian abnormalities that are thought to underlie several neuropsychiatric disorders, including bipolar mania and schizophrenia, for which a mechanistic understanding is still lacking. Here, we show that genetically depleting serotonin in Tph2 knockout mice promotes manic-like behaviors and disrupts daily oscillations of the dopamine biosynthetic enzyme tyrosine hydroxylase (TH) in midbrain dopaminergic nuclei. Specifically, while TH mRNA and protein levels in the Substantia Nigra (SN) and Ventral Tegmental Area (VTA) of wild-type mice doubled between the light and dark phase, TH levels were high throughout the day in Tph2 knockout mice, suggesting a hyperdopaminergic state. Analysis of TH expression in striatal terminal fields also showed blunted rhythms. Additionally, we found low abundance and blunted rhythmicity of the neuropeptide cholecystokinin (Cck) in the VTA of knockout mice, a neuropeptide whose downregulation has been implicated in manic-like states in both rodents and humans. Altogether, our results point to a previously unappreciated serotonergic control of circadian dopamine signaling and propose serotonergic dysfunction as an upstream mechanism underlying dopaminergic deregulation and ultimately maladaptive behaviors.


Assuntos
Ritmo Circadiano , Dopamina , Camundongos Knockout , Serotonina , Triptofano Hidroxilase , Tirosina 3-Mono-Oxigenase , Área Tegmentar Ventral , Animais , Serotonina/metabolismo , Camundongos , Ritmo Circadiano/fisiologia , Dopamina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Triptofano Hidroxilase/deficiência , Área Tegmentar Ventral/metabolismo , Colecistocinina/metabolismo , Colecistocinina/genética , Neurônios Dopaminérgicos/metabolismo , Masculino , Substância Negra/metabolismo , Camundongos Endogâmicos C57BL , Transtorno Bipolar/metabolismo , Transtorno Bipolar/genética
2.
ACS Chem Neurosci ; 15(8): 1702-1711, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38433715

RESUMO

Serotonin-releasing fibers depart from the raphe nuclei to profusely innervate the entire central nervous system, displaying in some brain regions high structural plasticity in response to genetically induced abrogation of serotonin synthesis. Chronic fluoxetine treatment used as a tool to model peri-physiological, clinically relevant serotonin elevation is also able to cause structural rearrangements of the serotonergic fibers innervating the hippocampus. Whether this effect is limited to hippocampal-innervating fibers or extends to other populations of axons is not known. Here, we used confocal imaging and three-dimensional (3-D) modeling analysis to expand our morphological investigation of fluoxetine-mediated effects on serotonergic circuitry. We found that chronic treatment with a behaviorally active dose of fluoxetine affects the morphology and reduces the density of serotonergic axons innervating the medial prefrontal cortex, a brain region strongly implicated in the regulation of depressive- and anxiety-like behavior. Axons innervating the somatosensory cortex were unaffected, suggesting differential susceptibility to serotonin changes across cortical areas. Importantly, a 1-month washout period was sufficient to reverse morphological changes in both the medial prefrontal cortex and in the previously characterized hippocampus, as well as to normalize behavior, highlighting an intriguing relationship between axon density and an antidepressant-like effect. Overall, these results further demonstrate the bidirectional plasticity of defined serotonergic axons and provide additional insights into fluoxetine effects on the serotonergic system.


Assuntos
Fluoxetina , Serotonina , Fluoxetina/farmacologia , Serotonina/farmacologia , Antidepressivos/farmacologia , Hipocampo , Encéfalo
3.
Neurobiol Dis ; 158: 105448, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34280523

RESUMO

INTRODUCTION: Plasticity at corticostriatal synapses is a key substrate for a variety of brain functions - including motor control, learning and reward processing - and is often disrupted in disease conditions. Despite intense research pointing toward a dynamic interplay between glutamate, dopamine (DA), and serotonin (5-HT) neurotransmission, their precise circuit and synaptic mechanisms regulating their role in striatal plasticity are still unclear. Here, we analyze the role of serotonergic raphe-striatal innervation in the regulation of DA-dependent corticostriatal plasticity. METHODS: Mice (males and females, 2-6 months of age) were housed in standard plexiglass cages at constant temperature (22 ± 1°C) and maintained on a 12/12h light/dark cycle with food and demineralized water ad libitum. In the present study, we used a knock-in mouse line in which the green fluorescent protein reporter gene (GFP) replaced the I Tph2 exon (Tph2GFP mice), allowing selective expression of GFP in the whole 5-HT system, highlighting both somata and neuritis of serotonergic neurons. Heterozygous, Tph2+/GFP, mice were intercrossed to obtain experimental cohorts, which included Wild-type (Tph2+/+), Heterozygous (Tph2+/GFP), and Mutant serotonin-depleted (Tph2GFP/GFP) animals. RESULTS: Using male and female mice, carrying on different Tph2 gene dosages, we show that Tph2 gene modulation results in sex-specific corticostriatal abnormalities, encompassing the abnormal amplitude of spontaneous glutamatergic transmission and the loss of Long Term Potentiation (LTP) in Tph2GFP/GFP mice of both sexes, while this form of plasticity is normally expressed in control mice (Tph2+/+). Once LTP is induced, only the Tph2+/GFP female mice present a loss of synaptic depotentiation. CONCLUSION: We showed a relevant role of the interaction between dopaminergic and serotonergic systems in controlling striatal synaptic plasticity. Overall, our data unveil that 5-HT plays a primary role in regulating DA-dependent corticostriatal plasticity in a sex-related manner and propose altered 5-HT levels as a critical determinant of disease-associated plasticity defects.


Assuntos
Neostriado/fisiologia , Plasticidade Neuronal/fisiologia , Serotonina/fisiologia , Sinapses/fisiologia , Animais , Animais Geneticamente Modificados , Fenômenos Eletrofisiológicos , Feminino , Ácido Glutâmico/fisiologia , Potenciação de Longa Duração , Masculino , Camundongos , Fibras Nervosas , Doença de Parkinson Secundária/fisiopatologia , Caracteres Sexuais , Transmissão Sináptica/fisiologia , Triptofano Hidroxilase/metabolismo
5.
ACS Chem Neurosci ; 10(7): 3218-3224, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31243951

RESUMO

Serotonin (5-HT)-releasing fibers show substantial structural plasticity in response to genetically induced changes in 5-HT content. However, whether 5-HT fibers appear malleable also following clinically relevant variations in 5-HT levels that may occur throughout an individual's life has not been investigated. Here, using confocal imaging and 3D modeling analysis in Tph2GFP knock-in mice, we show that chronic administration of the antidepressant fluoxetine dramatically affects the morphology of 5-HT fibers innervating the dorsal and ventral hippocampus resulting in a reduced density of fibers. Importantly, GFP fluorescence levels appeared unaffected in the somata of both dorsal and median raphe 5-HT neurons, arguing against potential fluoxetine-mediated down-regulation of the Tph2 promoter driving GFP expression in the Tph2GFP mouse model. In keeping with this notion, mice bearing the pan-serotonergic driver Pet1-Cre partnered with a Cre-responsive tdTomato allele also showed similar morphological alterations in hippocampal 5-HT circuitry following chronic fluoxetine treatment. Moreover 5-HT fibers innervating the cortex showed proper density and no overt morphological disorganization, indicating that the reported fluoxetine-induced rearrangements were hippocampus specific. On the whole, these data suggest that 5-HT fibers are shaped in response to subtle changes of 5-HT homeostasis and may provide a structural basis by which antidepressants exert their therapeutic effect.


Assuntos
Fluoxetina/farmacologia , Hipocampo/efeitos dos fármacos , Fibras Nervosas/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Neurônios Serotoninérgicos/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Natação
6.
Sci Rep ; 8(1): 11847, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087403

RESUMO

Abnormal hippocampal neural plasticity has been implicated in behavioural abnormalities and complex neuropsychiatric conditions, including bipolar disorder (BD). However, the determinants of this neural alteration remain unknown. This work tests the hypothesis that the neurotransmitter serotonin (5-HT) is a key determinant of hippocampal neuroplasticity, and its absence leads to maladaptive behaviour relevant for BD. Depletion of brain 5-HT in Tph2 mutant mice resulted in reduced behavioural despair, reduced anxiety, marked aggression and lower habituation in novel environments, reminiscent of bipolar-associated manic behaviour. Treatment with valproate produced a substantial improvement of the mania-like behavioural phenotypes displayed by Tph2 mutants. Brain-wide fMRI mapping in mutants revealed functional hippocampal hyperactivity in which we also observed dramatically increased neuroplasticity. Importantly, remarkable correspondence between the transcriptomic profile of the Tph2 mutant hippocampus and neurons from bipolar disorder patients was observed. Chronic stress reversed the emotional phenotype and the hippocampal transcriptional landscape of Tph2 mutants. These changes were associated with inappropriate activation of transcriptional adaptive response to stress as assessed by gene set enrichment analyses in the hippocampus of Tph2 mutant mice. These findings delineate 5-HT as a critical determinant in BD associated maladaptive emotional responses and aberrant hippocampal neuroplasticity, and support the use of Tph2-/- mice as a new research tool for mechanistic and therapeutic research in bipolar disorder.


Assuntos
Transtorno Bipolar/prevenção & controle , Hipocampo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo , Ácido Valproico/farmacologia , Animais , Anticonvulsivantes/farmacologia , Ansiedade/genética , Ansiedade/fisiopatologia , Ansiedade/prevenção & controle , Transtorno Bipolar/genética , Transtorno Bipolar/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Perfilação da Expressão Gênica/métodos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Triptofano Hidroxilase/genética
7.
Cell Rep ; 21(4): 910-918, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29069598

RESUMO

Serotonin-producing neurons profusely innervate brain regions via long-range projections. However, it remains unclear whether and how endogenous serotonergic transmission specifically influences regional or global functional activity. We combined designed receptors exclusively activated by designed drugs (DREADD)-based chemogenetics and functional magnetic resonance imaging (fMRI), an approach we term "chemo-fMRI," to causally probe the brain-wide substrates modulated by endogenous serotonergic activity. We describe the generation of a conditional knockin mouse line that, crossed with serotonin-specific Cre-recombinase mice, allowed us to remotely stimulate serotonergic neurons during fMRI scans. We show that endogenous stimulation of serotonin-producing neurons does not affect global brain activity but results in region-specific activation of a set of primary target regions encompassing corticohippocampal and ventrostriatal areas. By contrast, pharmacological boosting of serotonin levels produced widespread fMRI deactivation, plausibly reflecting the mixed contribution of central and perivascular constrictive effects. Our results identify the primary functional targets of endogenous serotonergic stimulation and establish causation between activation of serotonergic neurons and regional fMRI signals.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Neurônios Serotoninérgicos/fisiologia , Transmissão Sináptica , Animais , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Serotoninérgicos/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacocinética , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
8.
Front Cell Neurosci ; 11: 202, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769763

RESUMO

Serotonin (5-HT)-synthetizing neurons, which are confined in the raphe nuclei of the rhombencephalon, provide a pervasive innervation of the central nervous system (CNS) and are involved in the modulation of a plethora of functions in both developing and adult brain. Classical studies have described the post-natal development of serotonergic axons as a linear process of terminal field innervation. However, technical limitations have hampered a fine morphological characterization. With the advent of genetic mouse models, the possibility to label specific neuronal populations allowed the rigorous measurement of their axonal morphological features as well as their developmental dynamics. Here, we used the Tph2GFP knock-in mouse line, in which GFP expression allows punctual identification of serotonergic neurons and axons, for confocal microscope imaging and we performed 3-dimensional reconstruction in order to morphologically characterize the development of serotonergic fibers in specified brain targets from birth to adulthood. Our analysis highlighted region-specific developmental patterns of serotonergic fiber density ranging from a linear and progressive colonization of the target (Caudate/Putamen, Basolateral Amygdala, Geniculate Nucleus and Substantia Nigra) to a transient increase in fiber density (medial Prefrontal Cortex, Globus Pallidus, Somatosensory Cortex and Hippocampus) occurring with a region-specific timing. Despite a common pattern of early post-natal morphological maturation in which a progressive rearrangement from a dot-shaped to a regular and smooth fiber morphology was observed, starting from post-natal day 28 serotonergic fibers acquire the region specific morphological features present in the adult. In conclusion, we provided novel, target-specific insights on the morphology and temporal dynamics of the developing serotonergic fibers.

9.
ACS Chem Neurosci ; 8(5): 1043-1052, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28029782

RESUMO

Modeling biological systems in vitro has contributed to clarification of complex mechanisms in simplified and controlled experimental conditions. Mouse embryonic stem (mES) cells can be successfully differentiated toward specific neuronal cell fates, thus representing an attractive tool to dissect, in vitro, mechanisms that underlie complex neuronal features. In this study, we generated and characterized a reporter mES cell line, called Tph2GFP, in which the vital reporter GFP replaces the tryptophan hydroxylase 2 (Tph2) gene. Tph2GFP mES cells selectively express GFP upon in vitro differentiation toward the serotonergic fate, they synthesize serotonin, possess excitable membranes, and show the typical morphological, morphometrical, and molecular features of in vivo serotonergic neurons. Thanks to the vital reporter GFP, we highlighted by time-lapse video microscopy several dynamic processes such as cell migration and axonal outgrowth in living cultures. Finally, we demonstrated that predifferentiated Tph2GFP cells are able to terminally differentiate, integrate, and innervate the host brain when grafted in vivo. On the whole, the present study introduces the Tph2GFP mES cell line as a useful tool allowing accurate developmental and dynamic studies and representing a reliable platform for the study of serotonergic neurons in health and disease.


Assuntos
Células-Tronco Embrionárias/metabolismo , Neurônios Serotoninérgicos/citologia , Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Neurônios Serotoninérgicos/metabolismo , Triptofano Hidroxilase/genética
10.
J Neurosci ; 36(10): 3064-78, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26961959

RESUMO

The endogenous NMDA receptor (NMDAR) agonist D-aspartate occurs transiently in the mammalian brain because it is abundant during embryonic and perinatal phases before drastically decreasing during adulthood. It is well established that postnatal reduction of cerebral D-aspartate levels is due to the concomitant onset of D-aspartate oxidase (DDO) activity, a flavoenzyme that selectively degrades bicarboxylic D-amino acids. In the present work, we show that d-aspartate content in the mouse brain drastically decreases after birth, whereas Ddo mRNA levels concomitantly increase. Interestingly, postnatal Ddo gene expression is paralleled by progressive demethylation within its putative promoter region. Consistent with an epigenetic control on Ddo expression, treatment with the DNA-demethylating agent, azacitidine, causes increased mRNA levels in embryonic cortical neurons. To indirectly evaluate the effect of a putative persistent Ddo gene hypermethylation in the brain, we used Ddo knock-out mice (Ddo(-/-)), which show constitutively suppressed Ddo expression. In these mice, we found for the first time substantially increased extracellular content of d-aspartate in the brain. In line with detrimental effects produced by NMDAR overstimulation, persistent elevation of D-aspartate levels in Ddo(-/-) brains is associated with appearance of dystrophic microglia, precocious caspase-3 activation, and cell death in cortical pyramidal neurons and dopaminergic neurons of the substantia nigra pars compacta. This evidence, along with the early accumulation of lipufuscin granules in Ddo(-/-) brains, highlights an unexpected importance of Ddo demethylation in preventing neurodegenerative processes produced by nonphysiological extracellular levels of free D-aspartate.


Assuntos
Envelhecimento , Encéfalo/metabolismo , D-Aspartato Oxidase/metabolismo , Ácido D-Aspártico/metabolismo , Neurônios/fisiologia , Regiões Promotoras Genéticas/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Encéfalo/citologia , Morte Celular/genética , D-Aspartato Oxidase/genética , Decitabina , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , RNA Mensageiro/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
11.
Sci Rep ; 5: 10933, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26190541

RESUMO

Mechanisms of gender-specific synaptic plasticity in the striatum, a brain region that controls motor, cognitive and psychiatric functions, remain unclear. Here we report that Rhes, a GTPase enriched in medium spiny neurons (MSNs) of striatum, alters the striatal cAMP/PKA signaling cascade in a gender-specific manner. While Rhes knockout (KO) male mice, compared to wild-type (WT) mice, had a significant basal increase of cAMP/PKA signaling pathway, the Rhes KO females exhibited a much stronger response of this pathway, selectively under the conditions of dopamine/adenosine-related drug challenge. Corticostriatal LTP defects are exclusively found in A2AR/D2R-expressing MSNs of KO females, compared to KO males, an effect that is abolished by PKA inhibitors but not by the removal of circulating estrogens. This suggests that the synaptic alterations found in KO females could be triggered by an aberrant A2AR/cAMP/PKA activity, but not due to estrogen-mediated effect. Consistent with increased cAMP signaling, D1R-mediated motor stimulation, haloperidol-induced catalepsy and caffeine-evoked hyper-activity are robustly enhanced in Rhes KO females compared to mutant males. Thus Rhes, a thyroid hormone-target gene, plays a relevant role in gender-specific synaptic and behavioral responses.


Assuntos
Corpo Estriado/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas de Ligação ao GTP/genética , Plasticidade Neuronal , Transdução de Sinais , Animais , Corpo Estriado/efeitos dos fármacos , Depressão Alastrante da Atividade Elétrica Cortical/genética , Dopamina/metabolismo , Dopamina/farmacologia , Feminino , Neurônios GABAérgicos/metabolismo , Expressão Gênica , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração/genética , Masculino , Camundongos , Camundongos Knockout , Atividade Motora , Mutação , Plasticidade Neuronal/genética , RNA Mensageiro , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D2/metabolismo , Fatores Sexuais , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA