Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Res Struct Biol ; 7: 100135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516624

RESUMO

Plant-based proteins are often associated with a range of health benefits. Most research primarily investigates pea and soy proteins, while lentil proteins received minimal attention. This study evaluates the effect of protein complexation (using the pH-shifting technique) coupled with trehalose conjugation on lentil and whey proteins. The protein structures after the modification were analysed using spectroscopic methods: Fourier-transform infrared, ultraviolet spectra, and fluorescence spectra. The amide group I, conformation protein, and tertiary structure of the trehalose-conjugated lentil-whey protein complexes (T-LWPs) showed significant changes (P < 0.05). Moreover, the surface properties (surface hydrophobicity and charges) of T-LWPs were significantly modified (P < 0.05), from 457 to 324 a.u and from 36 to -40 mV, respectively. Due to these modifications on the protein structures, the protein digestibility (80-86%) and water solubility (90-94.5%) of T-LWPs increased significantly (P < 0.05) with the increase in the trehalose concentration, from 0 (control) to 5% (w/w), respectively. This study suggested that coupling protein complexation and trehalose conjugation can enhance the overall properties of lentil-based protein complexes. With this enhancement, more opportunities in the utilisation of lentils are to be expected.

2.
Food Chem ; 447: 138882, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38452537

RESUMO

The two limiting factors for lentil protein utilization are water solubility and digestibility. In this study, we utilized two non-thermal techniques: (1) protein complexation of lentil and casein proteins using the pH-shifting method and (2) protein conjugation with trehalose to produce trehalose-conjugated lentil-casein protein complexes (T-CPs) with enhanced water solubility and digestibility. The protein structure of the T-CPs was analyzed for secondary protein structure, conformation protein, and tertiary protein structure using Fourier-transform infrared, UV, and fluorescence spectroscopies, respectively. The surface hydrophobicity and surface charge of T-CPs solution at pH 7.0 changed significantly (P < 0.05). Using these two non-thermal techniques, the water solubility and digestibility of T-CPs increased significantly (P < 0.05) by 85 to 89 % and 80 to 85 %, respectively. The results of this study suggested that these non-thermal techniques could enhance the surface and protein structure properties, improving water solubility and digestibility.


Assuntos
Caseínas , Lens (Planta) , Solubilidade , Caseínas/metabolismo , Lens (Planta)/química , Trealose , Água/química
3.
Food Chem ; 443: 138574, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309026

RESUMO

This study aimed to assess the technique of natural fermentation by applying water kefir to the casein protein. The diverse microorganisms and their enzymes found naturally in the water kefir can influence casein's characteristics. The fermented casein's protein quality (digestibility and secondary protein structure) and composition (total soluble solids and nutritive and non-nutritive substances) were investigated. Our findings revealed that the fermented casein's protein digestibility and total phenolic content increased from 82.46 to 88.60 % and 7.6 to 8.0 mg gallic acid equivalent/100 g, respectively. In addition, their surface charge and hydrophobicity changed from -30.06 to -34.93 mV and 286.9 to 213.7, respectively. Furthermore, the fermented casein's secondary protein components, α-helix (decreased from 13.66 to 8.21 %) and random coil (increased from 16.88 to 19.61 %), were also altered during the fermentation. Based on these findings, the water kefir fermentation approach could be an effective, practical, non-thermal approach for improving casein's protein quality and composition.


Assuntos
Kefir , Kefir/análise , Caseínas , Fermentação
4.
Nutr Res Pract ; 9(1): 37-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25671066

RESUMO

BACKGROUND/OBJECTIVES: Red grape seeds as functional food are a good source of important bioactive components such as phenolics and antioxidants, which decrease oxidative stress that contributes to the pathogenesis of hepatotoxicity. The current study was conducted in order to evaluate the protective effect of red grape dried seeds (RGDS) on antioxidant properties, lipid metabolism, and liver and kidney functions of rats with paracetamol (750 mg/kg) induced hepatotoxicity. MATERIALS/METHODS: RGDS was added to the basal diet at 5, 10, and 20%. Thirty five adult male rats were assigned to five groups (n = 7) for a six-week feeding period; group (1) normal control, group (2) induced control, groups (3, 4, and 5) fed a diet with RGPS at different levels, 5, 10, and 20%, respectively. At the end of the feeding period, animals' blood and tissues were collected for estimation of serum lipid profile, serum liver, and kidney biomarkers. The protection was measured by detecting lipid peroxidation (LPO), glutathione (GSH), superoxide dismutase (SOD), Catalase (CAT) (in liver tissues), and liver histological examination. RESULTS: The results showed a significant (P < 0.05) decrease in levels of serum cholesterol, triglycerides, low density lipoprotein (LDL-C), and very low density lipoprotein (VLDL-C), with a significant increase in level of high density lipoprotein (HDL-C) for RGDS groups compared to induced control. Rats administered a diet containing RGDS levels produced significant (P < 0.05) hepatoprotection by decreasing the activities of liver enzymes, kidney parameters, and lipid peroxidation, while levels of GSH, SOD, and CAT were increased significantly to near the normal levels. CONCLUSION: The RGDS 20% group was more effective than others against hepatotoxicity of paracetamol, which may be attributed to RGDS total phenols and antioxidant contents, which were 1.438 mg and 1.231 mg, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA