Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Am J Med Genet A ; : e63824, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031930

RESUMO

Legius syndrome, commonly referred to as SPRED1-related neurofibromatosis type 1-like syndrome, is a rare autosomal dominant disorder characterized by café-au-lait macules, freckling, lipomas, macrocephaly, and heterogeneous neurodevelopmental manifestations, including a different degree of learning difficulties. Although a partial clinical overlap exists with neurofibromatosis type 1 (NF1), Legius syndrome is distinguished by its genetic etiology and the absence of neurofibromas, indicating an inherent lack of tumor risk. The SPRED1 gene encodes the Sprouty-related protein with an EVH1 domain 1 (SPRED1), a negative regulator of the RAS-MAPK signaling pathway with a crucial role in cellular growth and development. Despite various genetic variants and genomic deletions associated with Legius syndrome, the full genetic spectrum of this condition remains elusive. In this study, we investigated the underlying genetic etiology in a cohort of patients presenting with typical manifestations of Legius syndrome using a custom Next Generation Sequencing (NGS) panel and Multiplex Ligation-Dependent Probe Amplification (MLPA) for NF1 and SPRED1. We identified 12 novel SPRED1 damaging variants segregating with the phenotype in all families. These rare variants affect conserved residues of the protein and are predicted damaging according to in silico tools. No clear genotype-phenotype correlations could be observed in the current cohort and previously reported patients, underscoring the heterogeneous genotype spectrum of this condition. Our findings expand the understanding of SPRED1 variants causing Legius syndrome and underscore the importance of comprehensively characterizing the genetic landscape of this disorder. Despite the absence of clear genotype-phenotype correlations, elucidating the genetic etiology of Legius syndrome is pertinent for facilitating accurate diagnosis, genetic counseling, and therapeutic interventions.

2.
Neurol Genet ; 10(4): e200168, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39035822

RESUMO

Objectives: To present a case series of novel CHD2 variants in patients presenting with genetic epileptic and developmental encephalopathy. Background: CHD2 gene encodes an ATP-dependent enzyme, chromodomain helicase DNA-binding protein 2, involved in chromatin remodeling. Pathogenic variants in CHD2 are linked to early-onset conditions such as developmental and epileptic encephalopathy, drug-resistant epilepsies, and neurodevelopmental disorders. Approximately 225 diagnosed patients from 28 countries exhibit various allelic variants in CHD2, including small intragenic deletions/insertions and missense, nonsense, and splice site variants. Results: We present the molecular and clinical characteristics of 17 unreported individuals from 17 families with novel pathogenic or likely pathogenic variants in CHD2. All individuals presented with severe global developmental delay, childhood-onset myoclonic epilepsy, and additional neuropsychiatric features, such as behavioral including autism, ADHD, and hyperactivity. Additional findings include abnormal reflexes, hypotonia and hypertonia, motor impairment, gastrointestinal problems, and kyphoscoliosis. Neuroimaging features included hippocampal signal alterations (4/10), with additional volume loss in 2 cases, inferior vermis hypoplasia (7/10), mild cerebellar atrophy (4/10), and cerebral atrophy (1/10). Discussion: Our study broadens the geographic scope of CHD2-related phenotypes, providing valuable insights into the prevalence and clinical characteristics of this genetic disorder in previously underrepresented populations.

3.
Prenat Diagn ; 44(8): 1003-1007, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38768012

RESUMO

Brachyolmia is a rare form of skeletal dysplasia characterized by a wide genetic and clinical heterogeneity. This condition is usually diagnosed postnatally, and very few cases of prenatal diagnosis have been described so far. Here, we report a case of a pregnant woman at 20 weeks' gestation referred to our center because of fetal short long bones. On targeted ultrasound, mild bowing of the femurs and fibulae and mild micrognathia were also observed. Exome sequencing analysis showed the presence in compound heterozygosity of two pathogenic variants-both truncating variants-in the 3-prime-phosphoadenosine 5-prime-phosphosulfate synthase 2 (PAPSS2) gene, known to cause brachyolmia type 4 (OMIM #612847). Of note, all of the few cases reported prenatally have indeed truncating variants. Hence, we speculate this kind of variant is likely responsible for a complete loss of function of the protein leading to an earlier and more severe phenotype.


Assuntos
Sulfato Adenililtransferase , Humanos , Feminino , Gravidez , Adulto , Sulfato Adenililtransferase/genética , Ultrassonografia Pré-Natal , Sequenciamento do Exoma , Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/diagnóstico , Doenças do Desenvolvimento Ósseo/diagnóstico por imagem , Complexos Multienzimáticos
4.
Am J Hum Genet ; 111(6): 1206-1221, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38772379

RESUMO

Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary ß subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.


Assuntos
Transtornos do Neurodesenvolvimento , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Epilepsia/genética , Sequenciamento do Exoma , Doenças Genéticas Ligadas ao Cromossomo X/genética , Heterozigoto , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem , Fenótipo , Canais de Potássio Shal/genética
5.
Epileptic Disord ; 25(6): 874-879, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37518898

RESUMO

The MYT1L gene plays a critical role in brain development, promoting the differentiation and proliferation of cells, important for the formation of brain connections. MYT1L is also involved in regulating the development of the hypothalamus, which is a crucial actor in weight regulation. Genetic variants in the MYT1L are associated with a range of developmental disorders, including intellectual disability, autism spectrum disorder, facial dysmorphisms, and epilepsy. The specific role of MYT1L in epilepsy remains elusive and no patients with developmental and epileptic encephalopathy (DEE) have been described so far. In this study, we report a patient with DEE presenting with severe refractory epilepsy, obesity, and behavioral abnormalities. Exome sequencing led to the identification of the heterozygous variant NM_001303052.2: c.1717G>A, p.(Gly573Arg) (chr2-1910340-C-T; GRCh38.p14) in the MYT1L gene. This variant was found to be inherited by the father, who was a mosaic and did not suffer from any neuropsychiatric disorders. Our observations expand the molecular and phenotype spectrum of MYT1L-related disorders, suggesting that affected individuals may present with severe epileptic phenotype leading to neurocognitive deterioration. Furthermore, we show that mosaic parents may not display the disease phenotype, with relevant implications for genetic counseling.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Humanos , Masculino , Transtorno do Espectro Autista/genética , Epilepsia/genética , Epilepsia/complicações , Encéfalo , Fenótipo , Pai , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética
6.
Hum Genet ; 142(7): 909-925, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37183190

RESUMO

Contactin-associated protein-like 2 (CNTNAP2) gene encodes for CASPR2, a presynaptic type 1 transmembrane protein, involved in cell-cell adhesion and synaptic interactions. Biallelic CNTNAP2 loss has been associated with "Pitt-Hopkins-like syndrome-1" (MIM#610042), while the pathogenic role of heterozygous variants remains controversial. We report 22 novel patients harboring mono- (n = 2) and bi-allelic (n = 20) CNTNAP2 variants and carried out a literature review to characterize the genotype-phenotype correlation. Patients (M:F 14:8) were aged between 3 and 19 years and affected by global developmental delay (GDD) (n = 21), moderate to profound intellectual disability (n = 17) and epilepsy (n = 21). Seizures mainly started in the first two years of life (median 22.5 months). Antiseizure medications were successful in controlling the seizures in about two-thirds of the patients. Autism spectrum disorder (ASD) and/or other neuropsychiatric comorbidities were present in nine patients (40.9%). Nonspecific midline brain anomalies were noted in most patients while focal signal abnormalities in the temporal lobes were noted in three subjects. Genotype-phenotype correlation was performed by also including 50 previously published patients (15 mono- and 35 bi-allelic variants). Overall, GDD (p < 0.0001), epilepsy (p < 0.0001), hyporeflexia (p = 0.012), ASD (p = 0.009), language impairment (p = 0.020) and severe cognitive impairment (p = 0.031) were significantly associated with the presence of biallelic versus monoallelic variants. We have defined the main features associated with biallelic CNTNAP2 variants, as severe cognitive impairment, epilepsy and behavioral abnormalities. We propose CASPR2-deficiency neurodevelopmental disorder as an exclusively recessive disease while the contribution of heterozygous variants is less likely to follow an autosomal dominant inheritance pattern.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Humanos , Criança , Transtorno do Espectro Autista/genética , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Estudos de Associação Genética , Convulsões/genética , Contactinas/genética
7.
Transl Pediatr ; 12(2): 292-300, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36891363

RESUMO

Background: KCNQ2 encephalopathy is characterized by neonatal-onset epilepsy and developmental impairment, due to "de novo" KCNQ2 pathogenic variants. According to literature data, sodium channel blocking agents appear to be the best treatment options for the disease. Reports describing the use of ketogenic diet (KD) in the KCNQ2 pediatric population are limited. The non-conservative amino acid substitution p.Ser122Leu in KCNQ2 is associated with a broad spectrum of inheritance modalities, clinical phenotypes and outcomes; no previous reports of the same variant treated with KD are available in literature. Case Description: We described a 22-month-old female with seizure onset on day 2 of life. At three months of age, she presented refractory status epilepticus (SE) that did not respond to midazolam and carbamazepine, which was added once a "de novo" p.Ser122Leu KCNQ2 variant was demonstrated. KD was the only treatment that led to cessation of seizures. The baby maintained seizures remission and achieved neurodevelopmental milestones. Conclusions: To define an overt genotype-phenotype correlation for KCNQ2 pathogenic variants is a challenge; we propose the KD as a valuable treatment for refractory seizures and impaired neurodevelopment in infants harboring "de novo" mutations in the KCNQ2 gene.

8.
Cancers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36980803

RESUMO

Neurofibromatosis type 1 (NF1) is a neurocutaneous disorder caused by mutations in NF1 gene, coding for neurofibromin 1. NF1 can be associated with Moyamoya disease (MMD), and this association, typical of paediatric patients, is referred to as Moyamoya syndrome (MMS). MMD is a cerebral arteriopathy characterized by the occlusion of intracranial arteries and collateral vessel formation, which increase the risk of ischemic and hemorrhagic events. RNF213 gene mutations have been associated with MMD, so we investigated whether rare variants of RNF213 could act as genetic modifiers of MMS phenotype in a pediatric cohort of 20 MMS children, 25 children affected by isolated MMD and 47 affected only by isolated NF1. By next-generation re-sequencing (NGS) of patients' DNA and gene burden tests, we found that RNF213 seems to play a role only for MMD occurrence, while it does not appear to be involved in the increased risk of Moyamoya for MMS patients. We postulated that the loss of neurofibromin 1 can be enough for the excessive proliferation of vascular smooth muscle cells, causing Moyamoya arteriopathy associated with NF1. Further studies will be crucial to support these findings and to elucidate the possible role of other genes, enhancing our knowledge about pathogenesis and treatment of MMS.

9.
Genes (Basel) ; 14(2)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36833427

RESUMO

Tourette syndrome (TS) is a neurodevelopmental disturbance with heterogeneous and not completely known etiology. Clinical and molecular appraisal of affected patients is mandatory for outcome amelioration. The current study aimed to understand the molecular bases underpinning TS in a vast cohort of pediatric patients with TS. Molecular analyses included array-CGH analyses. The primary goal was to define the neurobehavioral phenotype of patients with or without pathogenic copy number variations (CNVs). Moreover, we compared the CNVs with CNVs described in the literature in neuropsychiatric disorders, including TS, to describe an effective clinical and molecular characterization of patients for prognostic purposes and for correctly taking charge. Moreover, this study showed that rare deletions and duplications focusing attention on significant genes for neurodevelopment had a statistically higher occurrence in children with tics and additional comorbidities. In our cohort, we determined an incidence of potentially causative CNVs of about 12%, in line with other literature studies. Clearly, further studies are needed to delineate the genetic background of patients with tic disorders in a superior way to elucidate the complex genetic architecture of these disorders, to describe the outcome, and to identify new possible therapeutic targets.


Assuntos
Tiques , Síndrome de Tourette , Humanos , Síndrome de Tourette/genética , Variações do Número de Cópias de DNA , Fenótipo , Comorbidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA