Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Biochem Biophys Res Commun ; 736: 150491, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39142236

RESUMO

XRCC8 is a member of the X-ray cross-complementing (XRCC) family, whose responsible gene has not been identified. Previous studies suggested ATM and other genes were potential candidates for XRCC8, but this was not confirmed. In this study, we characterized three V79-derived XRCC8 mutant cells: V-C4, V-E5, and V-G8. Western blot analysis showed reduced expression of the ATM protein in three XRCC8 mutants, and radiation-induced phosphorylated ATM foci were not detected by fluorescence immunocytochemistry. Both ATM knockout cells and XRCC8 mutants exhibited hypersensitivity to camptothecin. Through a cell fusion-based complementation test, we found that XRCC8 mutants were complemented by ATM-proficient cells, but not by ATM knockout cells, in terms of camptothecin sensitivity. Comprehensive sequencing of the ATM genome in XRCC8 mutants revealed unique mutations in each mutant. These results suggest that XRCC8 mutants carry ATM mutations, and their ATM is not properly functional, despite protein expression being detected. This is similar to missense mutations in some Ataxia Telangiectasia patients.

2.
Biochem Biophys Res Commun ; 738: 150517, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39146620

RESUMO

Here we report that simultaneous inhibition of the three primary DNA damage recognition PI3 kinase-like kinases (PIKKs) -ATM, ATR, and DNA-PK- induces severe combinatorial synthetic lethality in mammalian cells. Utilizing Chinese hamster cell lines CHO and V79 and their respective PIKK mutants, we evaluated effects of inhibiting these three kinases on cell viability, DNA damage response, and chromosomal integrity. Our results demonstrate that while single or dual kinase inhibition increased cytotoxicity, inhibition of all three PIKKs results in significantly higher synergistic lethality, chromosomal aberrations, and DNA double-strand break (DSB) induction as calculated by their synergy scores. These findings suggest that the overlapping redundancy of ATM, ATR, and DNA-PK functions is critical for cell survival, and their combined inhibition greatly disrupts DNA damage signaling and repair processes, leading to cell death. This study provides insights into the potential of multi-targeted DDR kinase inhibition as an effective anticancer strategy, necessitating further research to elucidate underlying mechanisms and therapeutic applications.

3.
Mutat Res ; 829: 111871, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39024734

RESUMO

Chinese hamster-derived cell lines including Chinese hamster lung fibroblasts (V79) have been used as model somatic cell lines in radiation biology and toxicology research for decades and have been instrumental in advancing our understanding of DNA damage response (DDR) mechanisms. Whereas many mutant lines deficient in DDR genes have been generated more than over decades, several key DDR genes such as ATM and ATR have not been established in the Chinese hamster system. Here, we transfected CRISPR/Cas9 vectors targeting Chinese hamster ATM or ATR into V79 cells and investigated whether the isolated clones had the characteristics reported in human and mouse studies. We obtained two clones of ATM knockout cells containing an insertion or deletions in the targeted locus. The ATM knockouts with no detectable ATM protein expression exhibited increased sensitivity to radiation and DNA double strand break inducing agents, cell cycle checkpoint defects and defective chromatid break repair. These are all characteristics of defective ATM function. Among the obtained ATR cells, which contained mutations in both ATR alleles while maintaining normal levels of ATR protein expression, one clone exhibited hypersensitivity to UV and replication stress agents. In the present study, we successfully established CRISPR-Cas9 derived ATM knockout cells. We couldn't knock out the ATR gene but obtained ATR mutant cells. Our results showed that Chinese hamster origin ATM knockout cells and ATR mutant cells could be useful tools for further research to reveal oncogenic functions and effects of developing anti-cancer therapeutics.

4.
Biochem Biophys Res Commun ; 694: 149386, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38134476

RESUMO

Radiation exposure poses a significant threat to cellular integrity by inducing DNA damage through the generation of free radicals and reactive oxygen species. Ascorbic acid, particularly its derivative Palmitoyl Ascorbic Acid 2-Glucoside (PA2G), has demonstrated remarkable radioprotective properties. While previous research focused on its pre-irradiation application, this study explores the post-irradiation radiomitigation potential of PA2G. Our findings reveal that post-irradiation treatment with PA2G enhances cell survival and accelerates DNA repair processes, particularly the non-homologous end-joining (NHEJ) repair pathway. Notably, PA2G treatment reduces the frequency of lethal chromosomal aberrations and micronuclei formation, indicating its ability to enhance the repair of complex DNA lesions. Furthermore, PA2G is shown to play a role in potentially lethal damage repair (PLDR). These radioprotective effects are specific to NHEJ and ATM pathways, as cells deficient in these mechanisms do not benefit from PA2G treatment. This study highlights PA2G as a versatile radioprotector, both pre- and post-irradiation, with significant potential for applications in radiation therapy and protection, offering new insights into its mechanism of action. Further research is required to elucidate the precise molecular mechanisms underlying PA2G's radiomitigation effects and its potential clinical applications.


Assuntos
Reparo do DNA , Glucosídeos , Sobrevivência Celular , Glucosídeos/farmacologia , Dano ao DNA , Ácido Ascórbico/farmacologia , Reparo do DNA por Junção de Extremidades
5.
Artigo em Inglês | MEDLINE | ID: mdl-37973295

RESUMO

Sulfoquinovosyl acylpropanediol (SQAP; a synthetic derivative of the sulfoglycolipid natural product sulfoquinovosyl acylglycerol, SQAG), has anti-tumor and radiosensitizing activities in tumor xenograft mouse models. Here, we have studied the PARP inhibitory activity of SQAP and synthetic lethality in BRCA2-deficient cells. In initial screening studies with DNA repair-deficient Chinese hamster ovary cells, homologous recombination repair-deficient cell lines showed increased sensitivity to SQAP, compared to wild-type cells or other DNA repair-deficient mutants. Chinese hamster lung V79 cells and the derivative cell lines V-C8 (BRCA2-deficient) and V-C8 + BRCA2 gene corrections were used to test the role of BRCA2 in SQAP cytotoxicity. The findings were confirmed in studies of the human colon cancer cell lines DLD-1 and its BRCA2-knockout derivative. SQAP inhibited the enzymes poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG). SQAP pretreatment decreased H2O2induced poly(ADP-ribose) formation in V79 cells. SQAP caused DNA double-strand breaks and chromosome aberrations in V79 BRCA2-mutated cells but did not affect cells in the G2 phase. We have demonstrated that SQAP induces synthetic lethality in BRCA2-deficient Chinese hamster-derived cells via its effects on poly(ADP-ribose) metabolism, motivating further examination of its therapeutic potential, especially against tumors that are deficient in homologous recombination repair due to mutations in BRCA2 or other genes.


Assuntos
Neoplasias , Poli Adenosina Difosfato Ribose , Cricetinae , Humanos , Animais , Camundongos , Cricetulus , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Reparo de DNA por Recombinação , Células CHO , Reparo do DNA , Poli(ADP-Ribose) Polimerases/metabolismo , Neoplasias/genética , Recombinação Homóloga
6.
Arthritis Rheumatol ; 75(12): 2130-2136, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37390361

RESUMO

OBJECTIVE: Recent advances in single-cell RNA sequencing technology have improved our understanding of the immunological landscape of rheumatoid arthritis (RA). We aimed to stratify the synovium from East Asian patients with RA by immune cell compositions and gain insight into the inflammatory drivers of each synovial phenotype. METHODS: Synovial tissues were obtained from East Asian patients in Japan with RA (n = 41) undergoing articular surgery. The cellular composition was quantified by a deconvolution approach using a public single-cell-based reference. Inflammatory pathway activity was calculated by gene set variation analysis, and chromatin accessibility was evaluated using assay of transposase accessible chromatin-sequencing. RESULTS: We stratified RA synovium into three distinct subtypes based on the hierarchical clustering of cellular composition data. One subtype was characterized by abundant HLA-DRAhigh synovial fibroblasts, autoimmune-associated B cells, GZMK+ GZMB+ CD8+ T cells, interleukin (IL)1-ß+ monocytes, and plasmablasts. In addition, tumor necrosis factor (TNF)-α, interferons (IFNs), and IL-6 signaling were highly activated in this subtype, and the expression of various chemokines was significantly enhanced. Moreover, we found an open chromatin region overlapping with RA risk locus rs9405192 near the IRF4 gene, suggesting the genetic background influences the development of this inflammatory synovial state. The other two subtypes were characterized by increased IFNs and IL-6 signaling, and expression of molecules associated with degeneration, respectively. CONCLUSION: This study adds insights into the synovial heterogeneity in East Asian patients and shows a promising link with predominant inflammatory signals. Evaluating the site of inflammation has the potential to lead to appropriate drug selection that matches the individual pathology.


Assuntos
Artrite Reumatoide , Interleucina-6 , Humanos , Interleucina-6/metabolismo , Linfócitos T CD8-Positivos/metabolismo , População do Leste Asiático , Membrana Sinovial/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interferons/genética , Cromatina
7.
Appl Environ Microbiol ; 89(7): e0081223, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37338413

RESUMO

Carnivorous pitcher plants are uniquely adapted to nitrogen limitation, using pitfall traps to acquire nutrients from insect prey. Pitcher plants in the genus Sarracenia may also use nitrogen fixed by bacteria inhabiting the aquatic microcosms of their pitchers. Here, we investigated whether species of a convergently evolved pitcher plant genus, Nepenthes, might also use bacterial nitrogen fixation as an alternative strategy for nitrogen capture. First, we constructed predicted metagenomes of pitcher organisms from three species of Singaporean Nepenthes using 16S rRNA sequence data and correlated predicted nifH abundances with metadata. Second, we used gene-specific primers to amplify and quantify the presence or absence of nifH directly from 102 environmental samples and identified potential diazotrophs with significant differential abundance in samples that also had positive nifH PCR tests. Third, we analyzed nifH in eight shotgun metagenomes from four additional Bornean Nepenthes species. Finally, we conducted an acetylene reduction assay using greenhouse-grown Nepenthes pitcher fluids to confirm nitrogen fixation is indeed possible within the pitcher habitat. Results show active acetylene reduction can occur in Nepenthes pitcher fluid. Variation in nifH from wild samples correlates with Nepenthes host species identity and pitcher fluid acidity. Nitrogen-fixing bacteria are associated with more neutral fluid pH, while endogenous Nepenthes digestive enzymes are most active at low fluid pH. We hypothesize Nepenthes species experience a trade-off in nitrogen acquisition; when fluids are acidic, nitrogen is primarily acquired via plant enzymatic degradation of insects, but when fluids are neutral, Nepenthes plants take up more nitrogen via bacterial nitrogen fixation. IMPORTANCE Plants use different strategies to obtain the nutrients that they need to grow. Some plants access their nitrogen directly from the soil, while others rely on microbes to access the nitrogen for them. Carnivorous pitcher plants generally trap and digest insect prey, using plant-derived enzymes to break down insect proteins and generate a large portion of the nitrogen that they subsequently absorb. In this study, we present results suggesting that bacteria living in the fluids formed by Nepenthes pitcher plants can fix nitrogen directly from the atmosphere, providing an alternative pathway for plants to access nitrogen. These nitrogen-fixing bacteria are only likely to be present when pitcher plant fluids are not strongly acidic. Interestingly, the plant's enzymes are known to be more active under strongly acidic conditions. We propose a potential trade-off where pitcher plants sometimes access nitrogen using their own enzymes to digest prey and at other times take advantage of bacterial nitrogen fixation.


Assuntos
Bactérias Fixadoras de Nitrogênio , Animais , RNA Ribossômico 16S/genética , Insetos , Bactérias/genética , Nitrogênio/análise , Alcinos
8.
Mutat Res ; 827: 111826, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37300987

RESUMO

Taxol is an antitumor drug derived from the bark of the Pacific Yew tree that inhibits microtubule disassembly, resulting in cell cycle arrest in late G2 and M phases. Additionally, Taxol increases cellular oxidative stress by generating reactive oxygen species. We hypothesized that the inhibition of specific DNA repair machinery/mechanisms would increase cellular sensitivity to the oxidative stress capacity of Taxol. Initial screening using Chinese hamster ovary (CHO) cell lines demonstrated that base excision repair deficiency, especially PARP deficiency, caused cellular Taxol hypersensitivity. Taxane diterpenes-containing Taxus yunnanensis extract also showed hypertoxicity in PARP deficient cells, which was consistent with other microtubule inhibitors like colcemid, vinblastine, and vincristine. Acute exposure of 50 nM Taxol treatment induced both significant cytotoxicity and M-phase arrest in PARP deficient cells, but caused neither significant cytotoxicity nor late G2-M cell cycle arrest in wild type cells. Acute exposure of 50 nM Taxol treatment induced oxidative stress and DNA damage. The antioxidant Ascorbic acid 2 glucoside partially reduced the cytotoxicity of Taxol in PARP deficient cell lines. Finally, the PARP inhibitor Olaparib increased cytotoxicity of Taxol in wild type CHO cells and two human cancer cell lines. Our study clearly demonstrates that cytotoxicity of Taxol would be enhanced by inhibiting PARP function as an enzyme implicated in DNA repair for oxidative stress.


Assuntos
Antineoplásicos , Paclitaxel , Animais , Cricetinae , Humanos , Paclitaxel/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Células CHO , Cricetulus , Dano ao DNA , Estresse Oxidativo , Antineoplásicos/farmacologia , Mitose , Linhagem Celular Tumoral , Apoptose
9.
Cureus ; 15(3): e36174, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37065302

RESUMO

BACKGROUND: At our institution, patients of all ages with extremely severe motor and intellectual disabilities (ESMID) receive comprehensive management similar to intensive care for "extremely ill patients." Some patients with ESMID develop frequent infections that are difficult to manage. The purpose of this study was to identify risk factors for frequent infections in these patients. METHODS: Thirty-seven patients with ESMID who were treated for infections at our institution between September 2018 and August 2019 were retrospectively investigated. Frequent infection was defined as three or more episodes of infection and antimicrobial treatment in one year. Infection status and potential risk factors for frequent infections (patient background factors, severity score, hematological parameters, anthropometry index, and parenteral nutritional status) were examined in univariate and multivariate analyses. RESULTS: Frequent infections occurred in 11 of the 37 patients (29.7%) during the study period, including respiratory and urinary tract infections. Univariate and multivariate analyses suggested hypoalbuminemia (p<0.01) and hypertriglyceridemia (p<0.01) were independent risk factors for frequent infections. CONCLUSIONS: Hypoalbuminemia and hypertriglyceridemia may be risk factors for frequent infections in patients with ESMID.

10.
Mutat Res ; 826: 111815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36812659

RESUMO

PARP inhibitors inflict severe toxicity to homologous recombination (HR) repair deficient cells because DNA damages induced by PARP inhibition result in lethal DNA double strand breaks in the absence of HR repair during DNA replication. PARP inhibitors are the first clinically approved drugs designed for synthetic lethality. The synthetic lethal interaction of PARP inhibitors is not limited to HR repair deficient cells. We investigated radiosensitive mutants isolated from Chinese hamster lung origin V79 cells to identify novel synthetic lethal targets in the context of PARP inhibition. HR repair deficient BRCA2 mutant cells were used for positive control. Among tested cells, XRCC8 mutants presented hypersensitivity to PARP inhibitor, Olaparib. XRCC8 mutants showed elevated sensitivity to bleomycin and camptothecin similar to BRCA2 mutants. XRCC8 mutants presented an elevation of γ-H2AX foci formation frequency and S-phase dependent chromosome aberrations with Olaparib treatment. Enumerated damage foci following Olaparib treatment were observed to be elevated in XRCC8 as in BRCA2 mutants. Although this may suggest that XRCC8 plays a role in a similar DNA repair pathway as BRCA2 in HR repair, XRCC8 mutants presented functional HR repair including proper Rad51 foci formation and even elevated sister chromatid exchange frequencies with PARP inhibitor treatment. For comparison, RAD51 foci formation was suppressed in HR repair deficient BRCA2 mutants. Additionally, XRCC8 mutants did not display delayed mitotic entry with PARP inhibitors whereas BRCA2 mutants did. XRCC8 mutant cell line has previously been reported as possessing a mutation in the ATM gene. XRCC8 mutants displayed maximum cytotoxicity to ATM inhibitor among tested mutants and wild type cells. Furthermore, the ATM inhibitor sensitized XRCC8 mutant to ionzing radiation, however, XRCC8 mutant V-G8 expressed reduced levels of ATM protein. The gene responsible for XRCC8 phenotype may not be ATM but highly associated with ATM functions. These results suggest that XRCC8 mutation is a target for PARP inhibitor-induced synthetic lethality in HR repair independent manner via the disruption of cell cycle regulation. Our findings expand the potential application of PARP inhibitors in tumors lacking DNA damage responding genes other than HR repair, and further investigation of XRCC8 may contribute to this research.


Assuntos
Antineoplásicos , Inibidores de Poli(ADP-Ribose) Polimerases , Cricetinae , Animais , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Reparo de DNA por Recombinação/genética , Mutação , Reparo do DNA/genética , Linhagem Celular , Cricetulus , Recombinação Homóloga/genética , Linhagem Celular Tumoral
11.
BMC Biol ; 20(1): 252, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352404

RESUMO

BACKGROUND: Symbiotic associations between bacteria and leguminous plants lead to the formation of root nodules that fix nitrogen needed for sustainable agricultural systems. Symbiosis triggers extensive genome and transcriptome remodeling in the plant, yet an integrated understanding of the extent of chromatin changes and transcriptional networks that functionally regulate gene expression associated with symbiosis remains poorly understood. In particular, analyses of early temporal events driving this symbiosis have only captured correlative relationships between regulators and targets at mRNA level. Here, we characterize changes in transcriptome and chromatin accessibility in the model legume Medicago truncatula, in response to rhizobial signals that trigger the formation of root nodules. RESULTS: We profiled the temporal chromatin accessibility (ATAC-seq) and transcriptome (RNA-seq) dynamics of M. truncatula roots treated with bacterial small molecules called lipo-chitooligosaccharides that trigger host symbiotic pathways of nodule development. Using a novel approach, dynamic regulatory module networks, we integrated ATAC-seq and RNA-seq time courses to predict cis-regulatory elements and transcription factors that most significantly contribute to transcriptomic changes associated with symbiosis. Regulators involved in auxin (IAA4-5, SHY2), ethylene (EIN3, ERF1), and abscisic acid (ABI5) hormone response, as well as histone and DNA methylation (IBM1), emerged among those most predictive of transcriptome dynamics. RNAi-based knockdown of EIN3 and ERF1 reduced nodule number in M. truncatula validating the role of these predicted regulators in symbiosis between legumes and rhizobia. CONCLUSIONS: Our transcriptomic and chromatin accessibility datasets provide a valuable resource to understand the gene regulatory programs controlling the early stages of the dynamic process of symbiosis. The regulators identified provide potential targets for future experimental validation, and the engineering of nodulation in species is unable to establish that symbiosis naturally.


Assuntos
Medicago truncatula , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simbiose/fisiologia
12.
Arthritis Res Ther ; 24(1): 186, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941595

RESUMO

BACKGROUND: Behçet's syndrome (BS) is an immune-mediated disease characterized by recurrent oral ulcers, genital ulcers, uveitis, and skin symptoms. HLA-B51, as well as other genetic polymorphisms, has been reported to be associated with BS; however, the pathogenesis of BS and its relationship to genetic risk factors still remain unclear. To address these points, we performed immunophenotyping and transcriptome analysis of immune cells from BS patients and healthy donors. METHODS: ImmuNexUT is a comprehensive database consisting of RNA sequencing data and eQTL database of immune cell subsets from patients with immune-mediated diseases and healthy donors, and flow cytometry data and transcriptome data from 23 BS patients and 28 healthy donors from the ImmuNexUT study were utilized for this study. Differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) were performed to identify genes associated with BS and clinical features of BS. eQTL database was used to assess the relationship between genetic risk factors of BS with those genes. RESULTS: The frequency of Th17 cells was increased in BS patients, and transcriptome analysis of Th17 cells suggested the activation of the NFκB pathway in Th17 cells of BS patients. Next, WGCNA was used to group genes into modules with similar expression patterns in each subset. Modules of antigen-presenting cells were associated with BS, and pathway analysis suggested the activation of antigen-presenting cells of BS patients. Further examination of genes in BS-associated modules indicated that the expression of YBX3, a member of a plasmacytoid dendritic cell (pDC) gene module associated with BS, is influenced by a BS risk polymorphism, rs2617170, in pDCs, suggesting that YBX3 may be a key molecule connecting genetic risk factors of BS with disease pathogenesis. Furthermore, pathway analysis of modules associated with HLA-B51 indicated that the association of IL-17-associated pathways in memory CD8+ T cells with HLA-B51; therefore, IL-17-producing CD8+ T cells, Tc17 cells, may play a critical role in BS. CONCLUSIONS: Various cells including CD4+ T cells, CD8+ T cells, and antigen-presenting cells are important in the pathogenesis of BS. Tc17 cells and YBX3 may be potential therapeutic targets in BS.


Assuntos
Síndrome de Behçet , Células Apresentadoras de Antígenos , Síndrome de Behçet/tratamento farmacológico , Linfócitos T CD8-Positivos , Perfilação da Expressão Gênica , Antígeno HLA-B51/genética , Humanos , Interleucina-17/genética
13.
Cell ; 185(18): 3375-3389.e21, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998627

RESUMO

Systemic lupus erythematosus (SLE) is a complex autoimmune disease involving multiple immune cells. To elucidate SLE pathogenesis, it is essential to understand the dysregulated gene expression pattern linked to various clinical statuses with a high cellular resolution. Here, we conducted a large-scale transcriptome study with 6,386 RNA sequencing data covering 27 immune cell types from 136 SLE and 89 healthy donors. We profiled two distinct cell-type-specific transcriptomic signatures: disease-state and disease-activity signatures, reflecting disease establishment and exacerbation, respectively. We then identified candidate biological processes unique to each signature. This study suggested the clinical value of disease-activity signatures, which were associated with organ involvement and therapeutic responses. However, disease-activity signatures were less enriched around SLE risk variants than disease-state signatures, suggesting that current genetic studies may not well capture clinically vital biology. Together, we identified comprehensive gene signatures of SLE, which will provide essential foundations for future genomic and genetic studies.


Assuntos
Lúpus Eritematoso Sistêmico , Transcriptoma , Humanos , Lúpus Eritematoso Sistêmico/genética , Análise de Sequência de RNA
15.
iScience ; 25(2): 103754, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35146383

RESUMO

Symbioses between angiosperms and rhizobia or arbuscular mycorrhizal fungi are controlled through a conserved signaling pathway. Microbe-derived, chitin-based elicitors activate plant cell surface receptors and trigger nuclear calcium oscillations, which are decoded by a calcium/calmodulin-dependent protein kinase (CCaMK) and its target transcription factor interacting protein of DMI3 (IPD3). Genes encoding CCaMK and IPD3 have been lost in multiple non-mycorrhizal plant lineages yet retained among non-mycorrhizal mosses. Here, we demonstrated that the moss Physcomitrium is equipped with a bona fide CCaMK that can functionally complement a Medicago loss-of-function mutant. Conservation of regulatory phosphosites allowed us to generate predicted hyperactive forms of Physcomitrium CCaMK and IPD3. Overexpression of synthetically activated CCaMK or IPD3 in Physcomitrium led to abscisic acid (ABA) accumulation and ectopic development of brood cells, which are asexual propagules that facilitate escape from local abiotic stresses. We therefore propose a functional role for Physcomitrium CCaMK-IPD3 in stress-associated developmental reprogramming.

16.
Front Fungal Biol ; 3: 808578, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37746234

RESUMO

The role of lipo-chitooligosaccharides (LCOs) as signaling molecules that mediate the establishment of symbiotic relationships between fungi and plants is being redefined. New evidence suggests that the production of these molecular signals may be more of a common trait in fungi than what was previously thought. LCOs affect different aspects of growth and development in fungi. For the ectomycorrhizal forming fungi, Laccaria bicolor, the production and effects of LCOs have always been studied with a symbiotic plant partner; however, there is still no scientific evidence describing the effects that these molecules have on this organism. Here, we explored the physiological, molecular, and metabolomic changes in L. bicolor when grown in the presence of exogenous sulfated and non-sulfated LCOs, as well as the chitooligomers, chitotetraose (CO4), and chitooctaose (CO8). Physiological data from 21 days post-induction showed reduced fungal growth in response to CO and LCO treatments compared to solvent controls. The underlying molecular changes were interrogated by proteomics, which revealed substantial alterations to biological processes related to growth and development. Moreover, metabolite data showed that LCOs and COs caused a downregulation of organic acids, sugars, and fatty acids. At the same time, exposure to LCOs resulted in the overproduction of lactic acid in L. bicolor. Altogether, these results suggest that these signals might be fungistatic compounds and contribute to current research efforts investigating the emerging impacts of these molecules on fungal growth and development.

17.
ACS Synth Biol ; 10(12): 3264-3277, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34851109

RESUMO

Agricultural productivity relies on synthetic nitrogen fertilizers, yet half of that reactive nitrogen is lost to the environment. There is an urgent need for alternative nitrogen solutions to reduce the water pollution, ozone depletion, atmospheric particulate formation, and global greenhouse gas emissions associated with synthetic nitrogen fertilizer use. One such solution is biological nitrogen fixation (BNF), a component of the complex natural nitrogen cycle. BNF application to commercial agriculture is currently limited by fertilizer use and plant type. This paper describes the identification, development, and deployment of the first microbial product optimized using synthetic biology tools to enable BNF for corn (Zea mays) in fertilized fields, demonstrating the successful, safe commercialization of root-associated diazotrophs and realizing the potential of BNF to replace and reduce synthetic nitrogen fertilizer use in production agriculture. Derived from a wild nitrogen-fixing microbe isolated from agricultural soils, Klebsiella variicola 137-1036 ("Kv137-1036") retains the capacity of the parent strain to colonize corn roots while increasing nitrogen fixation activity 122-fold in nitrogen-rich environments. This technical milestone was then commercialized in less than half of the time of a traditional biological product, with robust biosafety evaluations and product formulations contributing to consumer confidence and ease of use. Tested in multi-year, multi-site field trial experiments throughout the U.S. Corn Belt, fields grown with Kv137-1036 exhibited both higher yields (0.35 ± 0.092 t/ha ± SE or 5.2 ± 1.4 bushels/acre ± SE) and reduced within-field yield variance by 25% in 2018 and 8% in 2019 compared to fields fertilized with synthetic nitrogen fertilizers alone. These results demonstrate the capacity of a broad-acre BNF product to fix nitrogen for corn in field conditions with reliable agronomic benefits.


Assuntos
Grão Comestível , Fixação de Nitrogênio , Agricultura , Produtos Agrícolas , Grão Comestível/química , Fertilizantes/análise , Nitrogênio
18.
Cell ; 184(11): 3006-3021.e17, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33930287

RESUMO

Genetic studies have revealed many variant loci that are associated with immune-mediated diseases. To elucidate the disease pathogenesis, it is essential to understand the function of these variants, especially under disease-associated conditions. Here, we performed a large-scale immune cell gene-expression analysis, together with whole-genome sequence analysis. Our dataset consists of 28 distinct immune cell subsets from 337 patients diagnosed with 10 categories of immune-mediated diseases and 79 healthy volunteers. Our dataset captured distinctive gene-expression profiles across immune cell types and diseases. Expression quantitative trait loci (eQTL) analysis revealed dynamic variations of eQTL effects in the context of immunological conditions, as well as cell types. These cell-type-specific and context-dependent eQTLs showed significant enrichment in immune disease-associated genetic variants, and they implicated the disease-relevant cell types, genes, and environment. This atlas deepens our understanding of the immunogenetic functions of disease-associated variants under in vivo disease conditions.


Assuntos
Regulação da Expressão Gênica/genética , Expressão Gênica/imunologia , Doenças do Sistema Imunitário/genética , Adulto , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/metabolismo , Doenças do Sistema Imunitário/metabolismo , Doenças do Sistema Imunitário/fisiopatologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Locos de Características Quantitativas/imunologia , Transcriptoma/genética , Sequenciamento Completo do Genoma/métodos
19.
Nucleic Acids Res ; 49(1): e3, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33219668

RESUMO

Comparative functional genomics offers a powerful approach to study species evolution. To date, the majority of these studies have focused on the transcriptome in mammalian and yeast phylogenies. Here, we present a novel multi-species proteomic dataset and a computational pipeline to systematically compare the protein levels across multiple plant species. Globally we find that protein levels diverge according to phylogenetic distance but is more constrained than the mRNA level. Module-level comparative analysis of groups of proteins shows that proteins that are more highly expressed tend to be more conserved. To interpret the evolutionary patterns of conservation and divergence, we develop a novel network-based integrative analysis pipeline that combines publicly available transcriptomic datasets to define co-expression modules. Our analysis pipeline can be used to relate the changes in protein levels to different species-specific phenotypic traits. We present a case study with the rhizobia-legume symbiosis process that supports the role of autophagy in this symbiotic association.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Cromatografia Líquida/métodos , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genômica/métodos , Filogenia , Proteínas de Plantas/genética , Plantas/classificação , Plantas/genética , Proteoma/genética , Especificidade da Espécie , Espectrometria de Massas em Tandem/métodos , Transcriptoma/genética
20.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927807

RESUMO

BrdU (bromodeoxyuridine) and EdU (ethynyldeoxyuridine) have been largely utilized as the means of monitoring DNA replication and cellular division. Although BrdU induces gene and chromosomal mutations and induces sensitization to photons, EdU's effects have not been extensively studied yet. Therefore, we investigated EdU's potential cytotoxic and mutagenic effects and its related underlying mechanisms when administered to Chinese hamster ovary (CHO) wild type and DNA repair-deficient cells. EdU treatment displayed a higher cytotoxicity and genotoxicity than BrdU treatment. Cells with defective homologous recombination repair displayed a greater growth delay and severe inhibition of clonogenicity with EdU compared to wild type and other DNA repair-deficient cells. Inductions of sister chromatid exchange and hypoxanthine phosphorybosyl transferase (HPRT) mutation were observed in EdU-incorporated cells as well. Interestingly, on the other hand, EdU did not induce sensitization to photons to the same degree as BrdU. Our results demonstrate that elevated concentrations (similar to manufacturers suggested concentration; >5-10 µM) of EdU treatment were toxic to the cell cultures, particularly in cells with a defect in homologous recombination repair. Therefore, EdU should be administered with additional precautions.


Assuntos
Desoxiuridina/análogos & derivados , Células A549 , Animais , Bromodesoxiuridina , Células CHO , Cricetulus , Reparo do DNA , Desoxiuridina/toxicidade , Genes BRCA2 , Humanos , Testes de Mutagenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA