Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1365011, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746750

RESUMO

The rise of antibiotic resistance in the food chain is influenced by the use of antimicrobial agents, such as antibiotics, metals, and biocides, throughout the entire farm-to-fork continuum. Besides, non-clinical reservoirs potentially contribute to the transmission of critical pathogens such as multidrug-resistant (MDR) Klebsiella pneumoniae. However, limited knowledge exists about the population structure and genomic diversity of K. pneumoniae circulating in conventional poultry production. We conducted a comprehensive characterization of K. pneumoniae across the whole chicken production chain (7 farms; 14 flocks + environment + meat, 56 samples; 2019-2022), exploring factors beyond antibiotics, like copper and quaternary ammonium compounds (QACs). Clonal diversity and adaptive features of K. pneumoniae were characterized through cultural, molecular (FT-IR), and whole-genome-sequencing (WGS) approaches. All except one flock were positive for K. pneumoniae with a significant increase (p < 0.05) from early (n = 1/14) to pre-slaughter (n = 11/14) stages, most (n = 6/7) persisting in chicken meat batches. Colistin-resistant K. pneumoniae rates were low (4%-n = 1/24 positive samples), while most samples carried MDR strains (67%-n = 16/24) and copper-tolerant isolates (63%-n = 15/24, with sil and pco gene clusters; MICCuSO4 ≥ 16 mM), particularly at pre-slaughter. Benzalkonium chloride consistently exhibited activity against K. pneumoniae (MIC/MBC range = 4-64 mg/L) from representative strains independently of the presence or absence of genes linked to QACs tolerance. A polyclonal K. pneumoniae population, discriminated by FT-IR and WGS, included various lineages dispersed throughout the chicken's lifecycle at the farm (ST29-KL124, ST11-KL106, ST15-KL19, ST1228-KL38), until the meat (ST1-KL19, ST11-KL111, ST6405-KL109, and ST6406-CG147-KL111), or over years (ST631-49 KL109, ST6651-KL107, ST6406-CG147-KL111). Notably, some lineages were identical to those from human clinical isolates. WGS also revealed F-type multireplicon plasmids carrying sil + pco (copper) co-located with qacEΔ1 ± qacF (QACs) and antibiotic resistance genes like those disseminated in humans. In conclusion, chicken farms and their derived meat are significant reservoirs for diverse K. pneumoniae clones enriched in antibiotic resistance and metal tolerance genes, some exhibiting genetic similarities with human clinical strains. Further research is imperative to unravel the factors influencing K. pneumoniae persistence and dissemination within poultry production, contributing to improved food safety risk management. This study underscores the significance of understanding the interplay between antimicrobial control strategies and non-clinical sources to effectively address the spread of antimicrobial resistance.

2.
Euro Surveill ; 29(18)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38699902

RESUMO

BackgroundThe pet industry is expanding worldwide, particularly raw meat-based diets (RMBDs). There are concerns regarding the safety of RMBDs, especially their potential to spread clinically relevant antibiotic-resistant bacteria or zoonotic pathogens.AimWe aimed to investigate whether dog food, including RMBD, commercially available in Portugal can be a source of Salmonella and/or other Enterobacteriaceae strains resistant to last-line antibiotics such as colistin.MethodsFifty-five samples from 25 brands (21 international ones) of various dog food types from 12 suppliers were screened by standard cultural methods between September 2019 and January 2020. Isolates were characterised by phenotypic and genotypic methods, including whole genome sequencing and comparative genomics.ResultsOnly RMBD batches were contaminated, with 10 of 14 containing polyclonal multidrug-resistant (MDR) Escherichia coli and one MDR Salmonella. One turkey-based sample contained MDR Salmonella serotype 1,4,[5],12:i:- ST34/cgST142761 with similarity to human clinical isolates occurring worldwide. This Salmonella exhibited typical antibiotic resistance (bla TEM + strA-strB + sul2 + tet(B)) and metal tolerance profiles (pco + sil + ars) associated with the European epidemic clone. Two samples (turkey/veal) carried globally dispersed MDR E. coli (ST3997-complexST10/cgST95899 and ST297/cgST138377) with colistin resistance (minimum inhibitory concentration: 4 mg/L) and mcr-1 gene on IncX4 plasmids, which were identical to other IncX4 circulating worldwide.ConclusionSome RMBDs from European brands available in Portugal can be a vehicle for clinically relevant MDR Salmonella and pathogenic E. coli clones carrying genes encoding resistance to the last-line antibiotic colistin. Proactive actions within the One Health context, spanning regulatory, pet-food industry and consumer levels, are needed to mitigate these public health risks.


Assuntos
Antibacterianos , Escherichia coli , Carne , Salmonella , Animais , Salmonella/isolamento & purificação , Salmonella/genética , Salmonella/efeitos dos fármacos , Humanos , Portugal , Escherichia coli/isolamento & purificação , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Cães , Antibacterianos/farmacologia , Carne/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Animais de Estimação/microbiologia , Sequenciamento Completo do Genoma , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Proteínas de Escherichia coli/genética , Colistina/farmacologia , Ração Animal/microbiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia
3.
Microbiol Spectr ; 11(4): e0138623, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37428073

RESUMO

Concerns about colistin-resistant bacteria in animal food-environmental-human ecosystems prompted the poultry sector to implement colistin restrictions and explore alternative trace metals/copper feed supplementation. The impact of these strategies on the selection and persistence of colistin-resistant Klebsiella pneumoniae in the whole poultry production chain needs clarification. We assessed colistin-resistant and copper-tolerant K. pneumoniae occurrence in chickens raised with inorganic and organic copper formulas from 1-day-old chicks to meat (7 farms from 2019 to 2020), after long-term colistin withdrawal (>2 years). Clonal diversity and K. pneumoniae adaptive features were characterized by cultural, molecular, and whole-genome-sequencing (WGS) approaches. Most chicken flocks (75%) carried K. pneumoniae at early and preslaughter stages, with a significant decrease (P < 0.05) in meat batches (17%) and sporadic water/feed contamination. High rates (>50%) of colistin-resistant/mcr-negative K. pneumoniae were observed among fecal samples, independently of feed. Most samples carried multidrug-resistant (90%) and copper-tolerant (81%; silA and pcoD positive and with a MICCuSO4 of ≥16 mM) isolates. WGS revealed accumulation of colistin resistance-associated mutations and F type multireplicon plasmids carrying antibiotic resistance and metal/copper tolerance genes. The K. pneumoniae population was polyclonal, with various lineages dispersed throughout poultry production. ST15-KL19, ST15-KL146, and ST392-KL27 and IncF plasmids were similar to those from global human clinical isolates, suggesting chicken production as a reservoir/source of clinically relevant K. pneumoniae lineages and genes with potential risk to humans through food and/or environmental exposure. Despite the limited mcr spread due to the long-term colistin ban, this action was ineffective in controlling colistin-resistant/mcr-negative K. pneumoniae, regardless of feed. This study provides crucial insights into the persistence of clinically relevant K. pneumoniae in the poultry production chain and highlights the need for continued surveillance and proactive food safety actions within a One Health perspective. IMPORTANCE The spread of bacteria resistant to last-resort antibiotics such as colistin throughout the food chain is a serious concern for public health. The poultry sector has responded by restricting colistin use and exploring alternative trace metals/copper feed supplements. However, it is unclear how and to which extent these changes impact the selection and persistence of clinically relevant Klebsiella pneumoniae throughout the poultry chain. We found a high occurrence of copper-tolerant and colistin-resistant/mcr-negative K. pneumoniae in chicken flocks, regardless of inorganic and organic copper formulas use and a long-term colistin ban. Despite the high K. pneumoniae isolate diversity, the occurrence of identical lineages and plasmids across samples and/or clinical isolates suggests poultry as a potential source of human K. pneumoniae exposure. This study highlights the need for continued surveillance and proactive farm-to-fork actions to mitigate the risks to public health, relevant for stakeholders involved in the food industry and policymakers tasked with regulating food safety.


Assuntos
Colistina , Aves Domésticas , Animais , Humanos , Colistina/farmacologia , Klebsiella pneumoniae , Fazendas , Cobre/farmacologia , Galinhas/microbiologia , Ecossistema , Antibacterianos/farmacologia , Plasmídeos , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética
4.
Acad Radiol ; 24(1): 45-52, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27765598

RESUMO

RATIONALE AND OBJECTIVES: The aim of this study was to correlate acoustic radiation force impulse (ARFI) imaging velocities with the pathology results and to evaluate the ability of ARFI in distinguishing benign from malignant breast lesions. MATERIALS AND METHODS: B-mode ultrasonography (US) and ARFI were performed in patients with previously diagnosed and selected breast lesions for biopsy. Shear wave velocity (SWV) was measured inside lesions and in the surrounding parenchyma (m/s). SWV measurements as well as lesion-to-parenchyma ratio (LPR) were compared between benign and malignant lesions, and receiver operating characteristic (ROC) curves were plotted. Two blinded readers independently classified the lesions as benign or malignant in two separate reading sessions, one using B-mode US alone and the other using a combined set of B-mode US and ARFI. RESULTS: Eighty-one patients with a total of 92 breast lesions were included (57 benign and 35 malignant nodules). SWV inside lesions were significantly higher for malignant neoplasms compared to benign (medians of 9.1 m/s vs 3.5 m/s; P < 0.001). LPR was also significantly higher for malignant lesions (3.0 vs 1.4; P < 0.001). Parenchyma SWV had no differences between groups (P = 0.071). ROC curves showed a significant discriminative power for lesion SWV (area under the curve [AUC] = 0.980; P < 0.001) and LPR (AUC = 0.954; P < 0.001). For lesion measures, a cutoff of 6.593 m/s was obtained, with sensitivity and specificity of 88.6% and 96.5%, respectively. CONCLUSIONS: ARFI provides quantitative elasticity measurements, adding valuable complementary information to B-mode ultrasound, that can potentially help in breast lesion characterization and assisting the decision for biopsy recommendations.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/patologia , Técnicas de Imagem por Elasticidade/normas , Adulto , Idoso , Área Sob a Curva , Biópsia , Neoplasias da Mama/patologia , Diagnóstico Diferencial , Técnicas de Imagem por Elasticidade/métodos , Feminino , Humanos , Pessoa de Meia-Idade , Curva ROC , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA