Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 20(7): e1011181, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39074150

RESUMO

When replication forks encounter damaged DNA, cells utilize damage tolerance mechanisms to allow replication to proceed. These include translesion synthesis at the fork, postreplication gap filling, and template switching via fork reversal or homologous recombination. The extent to which these different damage tolerance mechanisms are utilized depends on cell, tissue, and developmental context-specific cues, the last two of which are poorly understood. To address this gap, we have investigated damage tolerance responses in Drosophila melanogaster. We report that tolerance of DNA alkylation damage in rapidly dividing larval tissues depends heavily on translesion synthesis. Furthermore, we show that the REV1 protein plays a multi-faceted role in damage tolerance in Drosophila. Larvae lacking REV1 are hypersensitive to methyl methanesulfonate (MMS) and have highly elevated levels of γ-H2Av (Drosophila γ-H2AX) foci and chromosome aberrations in MMS-treated tissues. Loss of the REV1 C-terminal domain (CTD), which recruits multiple translesion polymerases to damage sites, sensitizes flies to MMS. In the absence of the REV1 CTD, DNA polymerases eta and zeta become critical for MMS tolerance. In addition, flies lacking REV3, the catalytic subunit of polymerase zeta, require the deoxycytidyl transferase activity of REV1 to tolerate MMS. Together, our results demonstrate that Drosophila prioritize the use of multiple translesion polymerases to tolerate alkylation damage and highlight the critical role of REV1 in the coordination of this response to prevent genome instability.


Assuntos
Dano ao DNA , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA , Proteínas de Drosophila , Drosophila melanogaster , Metanossulfonato de Metila , Nucleotidiltransferases , Animais , Drosophila melanogaster/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Metanossulfonato de Metila/farmacologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Alquilação , Reparo do DNA/genética , Replicação do DNA/genética , Larva/genética , Histonas/metabolismo , Histonas/genética
2.
bioRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405884

RESUMO

When replication forks encounter damaged DNA, cells utilize DNA damage tolerance mechanisms to allow replication to proceed. These include translesion synthesis at the fork, postreplication gap filling, and template switching via fork reversal or homologous recombination. The extent to which these different damage tolerance mechanisms are utilized depends on cell, tissue, and developmental context-specific cues, the last two of which are poorly understood. To address this gap, we have investigated damage tolerance responses following alkylation damage in Drosophila melanogaster. We report that translesion synthesis, rather than template switching, is the preferred response to alkylation-induced damage in diploid larval tissues. Furthermore, we show that the REV1 protein plays a multi-faceted role in damage tolerance in Drosophila. Drosophila larvae lacking REV1 are hypersensitive to methyl methanesulfonate (MMS) and have highly elevated levels of γ-H2Av foci and chromosome aberrations in MMS-treated tissues. Loss of the REV1 C-terminal domain (CTD), which recruits multiple translesion polymerases to damage sites, sensitizes flies to MMS. In the absence of the REV1 CTD, DNA polymerases eta and zeta become critical for MMS tolerance. In addition, flies lacking REV3, the catalytic subunit of polymerase zeta, require the deoxycytidyl transferase activity of REV1 to tolerate MMS. Together, our results demonstrate that Drosophila prioritize the use of multiple translesion polymerases to tolerate alkylation damage and highlight the critical role of REV1 in the coordination of this response to prevent genome instability.

4.
Cell Stem Cell ; 15(3): 340-349, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25130492

RESUMO

The liver is thought to utilize facultative stem cells, also known as "oval cells" or "atypical ductal cells" (ADCs), for regeneration following various types of injury. However, this notion has been based largely on in vitro studies and transplantation models; where lineage tracing has been used, results have been conflicting and effect sizes have been small. Here, we used genetic and nucleoside analog-based tools to mark and track the origin and contribution of various cell populations to liver regeneration in vivo following several ADC-inducing insults. We report that, contrary to prevailing stem-cell-based models of regeneration, virtually all new hepatocytes come from preexisting hepatocytes.


Assuntos
Diferenciação Celular , Hepatócitos/citologia , Células-Tronco/citologia , Adulto , Animais , Sistema Biliar/citologia , Proliferação de Células , Dependovirus/metabolismo , Células Epiteliais/citologia , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL
5.
Gastroenterology ; 146(3): 647-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24333829

RESUMO

Hematogenous dissemination is thought to be a late event in cancer progression. We recently showed in a genetic model of pancreatic ductal adenocarcinoma that pancreas cells can be detected in the bloodstream before tumor formation. To confirm these findings in humans, we used microfluidic geometrically enhanced differential immunocapture to detect circulating pancreas epithelial cells in patient blood samples. We captured more than 3 circulating pancreas epithelial cells/mL in 7 of 21 (33%) patients with cystic lesions and no clinical diagnosis of cancer (Sendai criteria negative), 8 of 11 (73%) with pancreatic ductal adenocarcinoma, and in 0 of 19 patients without cysts or cancer (controls). These findings indicate that cancer cells are present in the circulation of patients before tumors are detected, which might be used in risk assessment.


Assuntos
Células Epiteliais/patologia , Células Neoplásicas Circulantes/patologia , Pâncreas/patologia , Cisto Pancreático/diagnóstico , Cisto Pancreático/patologia , Adenocarcinoma/diagnóstico , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/patologia , Estudos de Casos e Controles , Feminino , Imunofluorescência , Humanos , Masculino , Técnicas Analíticas Microfluídicas , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Medição de Risco
6.
Genes Dev ; 27(7): 719-24, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23520387

RESUMO

Cellular reprogramming-the ability to interconvert distinct cell types with defined factors-is transforming the field of regenerative medicine. However, this phenomenon has rarely been observed in vivo without exogenous factors. Here, we report that activation of Notch, a signaling pathway that mediates lineage segregation during liver development, is sufficient to reprogram hepatocytes into biliary epithelial cells (BECs). Moreover, using lineage tracing, we show that hepatocytes undergo widespread hepatocyte-to-BEC reprogramming following injuries that provoke a biliary response, a process requiring Notch. These results provide direct evidence that mammalian regeneration prompts extensive and dramatic changes in cellular identity under injury conditions.


Assuntos
Células Epiteliais/citologia , Hepatócitos/citologia , Regeneração Hepática/fisiologia , Animais , Linhagem da Célula , Células Epiteliais/metabolismo , Hepatócitos/metabolismo , Camundongos , Receptores Notch/metabolismo , Transdução de Sinais , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA