Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 620(7975): 787-793, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37612396

RESUMO

Increasing gold and mineral mining activity in rivers across the global tropics has degraded ecosystems and threatened human health1,2. Such river mineral mining involves intensive excavation and sediment processing in river corridors, altering river form and releasing excess sediment downstream2. Increased suspended sediment loads can reduce water clarity and cause siltation to levels that may result in disease and mortality in fish3,4, poor water quality5 and damage to human infrastructure6. Although river mining has been investigated at local scales, no global synthesis of its physical footprint and impacts on hydrologic systems exists, leaving its full environmental consequences unknown. We assemble and analyse a 37-year satellite database showing pervasive, increasing river mineral mining worldwide. We identify 396 mining districts in 49 countries, concentrated in tropical waterways that are almost universally altered by mining-derived sediment. Of 173 mining-affected rivers, 80% have suspended sediment concentrations (SSCs) more than double pre-mining levels. In 30 countries in which mining affects large (>50 m wide) rivers, 23 ± 19% of large river length is altered by mining-derived sediment, a globe-spanning effect representing 35,000 river kilometres, 6% (±1% s.e.) of all large tropical river reaches. Our findings highlight the ubiquity and intensity of mining-associated degradation in tropical river systems.


Assuntos
Ecossistema , Sedimentos Geológicos , Mineração , Rios , Clima Tropical , Animais , Humanos , Bases de Dados Factuais , Ouro , Hidrologia , Mineração/estatística & dados numéricos , Mineração/tendências , Peixes , Sedimentos Geológicos/análise
2.
Science ; 376(6600): 1447-1452, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35737794

RESUMO

Rivers support indispensable ecological functions and human health and infrastructure. Yet limited river sampling hinders our understanding of consequential changes to river systems. Satellite-based estimates of suspended sediment concentration and flux for 414 major rivers reveal widespread global change that is directly attributable to human activity in the past half-century. Sediment trapping by dams in the global hydrologic north has contributed to global sediment flux declines to 49% of pre-dam conditions. Recently, intensive land-use change in the global hydrologic south has increased erosion, with river suspended sediment concentration on average 41 ± 7% greater than in the 1980s. This north-south divergence has rapidly reconfigured global patterns in sediment flux to the oceans, with the dominant sources of suspended sediment shifting from Asia to South America.


Assuntos
Efeitos Antropogênicos , Sedimentos Geológicos , Rios , Monitoramento Ambiental , Sedimentos Geológicos/química , Atividades Humanas , Humanos , Hidrologia , Oceanos e Mares , Rios/química
3.
Sci Adv ; 6(49)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33277243

RESUMO

Complex hydroclimate in the United States and Canada has limited identification of possible ongoing changes in streamflow. We address this challenge by classifying 541 stations in the United States and Canada into 15 "hydro-regions," each with similar seasonal streamflow characteristics. Analysis of seasonal streamflow records at these stations from 1910 to present indicates regionally coherent changes in the frequency of extreme high- and low-flow events. Where changes are significant, these events have, on average, doubled in frequency relative to 1950 to 1969. In hydro-regions influenced by snowmelt runoff, extreme high-flow event frequency has increased despite snowpack depletion by warming winter temperatures. In drought-prone hydro-regions of the western United States and Southeast, extreme low-flow event frequency has increased, particularly during summer and fall. The magnitude and regional consistency of these hydrologic changes warrant attention by watershed stakeholders. The hydro-region framework facilitates quantification and further analyses of these changes to extreme streamflow.

4.
PLoS One ; 12(7): e0180107, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28692693

RESUMO

Dams have been a fundamental part of the U.S. national agenda over the past two hundred years. Recently, however, dam removal has emerged as a strategy for addressing aging, obsolete infrastructure and more than 1,100 dams have been removed since the 1970s. However, only 130 of these removals had any ecological or geomorphic assessments, and fewer than half of those included before- and after-removal (BAR) studies. In addition, this growing, but limited collection of dam-removal studies is limited to distinct landscape settings. We conducted a meta-analysis to compare the landscape context of existing and removed dams and assessed the biophysical responses to dam removal for 63 BAR studies. The highest concentration of removed dams was in the Northeast and Upper Midwest, and most have been removed from 3rd and 4th order streams, in low-elevation (< 500 m) and low-slope (< 5%) watersheds that have small to moderate upstream watershed areas (10-1000 km2) with a low risk of habitat degradation. Many of the BAR-studied removals also have these characteristics, suggesting that our understanding of responses to dam removals is based on a limited range of landscape settings, which limits predictive capacity in other environmental settings. Biophysical responses to dam removal varied by landscape cluster, indicating that landscape features are likely to affect biophysical responses to dam removal. However, biophysical data were not equally distributed across variables or clusters, making it difficult to determine which landscape features have the strongest effect on dam-removal response. To address the inconsistencies across dam-removal studies, we provide suggestions for prioritizing and standardizing data collection associated with dam removal activities.


Assuntos
Fenômenos Biofísicos , Conservação dos Recursos Naturais , Rios , Ecossistema , Geografia , Análise de Componente Principal , Estados Unidos
5.
Proc Natl Acad Sci U S A ; 109(11): 4064-9, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22378648

RESUMO

Isotopes of iodine play significant environmental roles, including a limiting micronutrient ((127)I), an acute radiotoxin ((131)I), and a geochemical tracer ((129)I). But the cycling of iodine through terrestrial ecosystems is poorly understood, due to its complex environmental chemistry and low natural abundance. To better understand iodine transport and fate in a terrestrial ecosystem, we traced fallout (131)iodine throughout a small temperate catchment following contamination by the 11 March 2011 failure of the Fukushima Daiichi nuclear power facility. We find that radioiodine fallout is actively and efficiently scavenged by the soil system, where it is continuously focused to surface soils over a period of weeks following deposition. Mobilization of historic (pre-Fukushima) (137)cesium observed concurrently in these soils suggests that the focusing of iodine to surface soils may be biologically mediated. Atmospherically deposited iodine is subsequently redistributed from the soil system via fluvial processes in a manner analogous to that of the particle-reactive tracer (7)beryllium, a consequence of the radionuclides' shared sorption affinity for fine, particulate organic matter. These processes of surficial redistribution create iodine hotspots in the terrestrial environment where fine, particulate organic matter accumulates, and in this manner regulate the delivery of iodine nutrients and toxins alike from small catchments to larger river systems, lakes and estuaries.


Assuntos
Ecossistema , Cinza Radioativa/análise , Atmosfera/química , Sedimentos Geológicos/química , Radioisótopos do Iodo , Japão , Movimento (Física) , Chuva/química , Solo/química , Propriedades de Superfície
6.
Geomorphology (Amst) ; 128(1-2): 85-91, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21552357

RESUMO

Understanding of the transport mechanisms of contaminated soils and sediment is essential for the sustainable management of contaminated lands. In New England and elsewhere, vast areas of agricultural lands are contaminated by the historical application of lead-arsenate pesticides. Left undisturbed the physical and chemical mobility of As and Pb in these soils is limited due to their strong affinity for adsorption onto solid phases. However, soil disturbance promotes erosion and overland flow during intense rainstorms. Here we investigate the event-scale transport of disturbed As and Pb contaminated soils through measurement of concentrations of As and Pb in suspended sediment and changes in Pb isotopic ratios in overland flow. Investigation of several rain events shows that where land disturbance has occurred, physical transport of silt-sized particles and aggregates is the primary transport vector of As and Pb derived from pesticide-contaminated soil. Although both As and Pb are associated with similarly-sized particles, we find that solid-phase As is more effectively mobilized and transported than Pb. Our results demonstrate that anthropogenic land disturbance of historical lands contaminated with lead-arsenate pesticides may redistribute, through physical transport, significant amounts of As, and lesser amounts of Pb, to riparian and stream sediments, where they are potentially more bioavailable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA