Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods Enzymol ; 696: 179-199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38658079

RESUMO

ß-Hydroxy-α-amino acids (ßHAAs) are an essential class of building blocks of therapeutically important compounds and complex natural products. They contain two chiral centers at Cα and Cß positions, resulting in four possible diastereoisomers. Many innovative asymmetric syntheses have been developed to access structurally diverse ßHAAs. The main challenge, however, is the control of the relative and absolute stereochemistry of the asymmetric carbons in a sustainable way. In this respect, there has been considerable attention focused on the chemoenzymatic synthesis of ßHAAs via a one-step process. Nature has evolved different enzymatic routes to produce these valuable ßHAAs. Among these naturally occurring transformations, L-threonine transaldolases present potential biocatalysts to generate ßHAAs in situ. 4-Fluorothreonine transaldolase from Streptomyces sp. MA37 (FTaseMA) catalyzes the cross-over transaldolation reaction between L-Thr and fluoroacetaldehyde to give 4-fluorothreonine and acetaldehyde (Ad). It has been demonstrated that FTaseMA displays considerable substrate plasticity toward structurally diverse aldehyde acceptors, leading to the production of various ßHAAs. In this chapter, we describe methods for the preparation of FTaseMA, and the chemoenzymatic synthesis of ßHAAs from various aldehydes and L-Thr using FTaseMA.


Assuntos
Streptomyces , Transaldolase , Streptomyces/enzimologia , Transaldolase/metabolismo , Transaldolase/química , Transaldolase/genética , Treonina/análogos & derivados , Treonina/química , Treonina/metabolismo , Biocatálise , Aminoácidos/química , Aminoácidos/metabolismo , Especificidade por Substrato , Acetaldeído/análogos & derivados , Acetaldeído/metabolismo , Acetaldeído/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Ensaios Enzimáticos/métodos , Estereoisomerismo
2.
J Nat Prod ; 87(4): 831-836, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38551509

RESUMO

Two novel polyketides, accraspiroketides A (1) and B (2), which feature unprecedented [6 + 6+6 + 6] + [5 + 5] spiro chemical architectures, were isolated from Streptomyces sp. MA37 ΔaccJ mutant strain. Compounds 1-2 exhibit excellent activity against Gram-positive bacteria (MIC = 1.5-6.3 µg/mL). Notably, 1 and 2 have superior activity against clinically isolated Enterococcus faecium K60-39 (MIC = 4.0 µg/mL and 4.7 µg/mL, respectively) than ampicillin (MIC = 25 µg/mL).


Assuntos
Antibacterianos , Enterococcus faecium , Testes de Sensibilidade Microbiana , Policetídeos , Streptomyces , Policetídeos/farmacologia , Policetídeos/química , Policetídeos/isolamento & purificação , Streptomyces/química , Estrutura Molecular , Antibacterianos/farmacologia , Antibacterianos/química , Enterococcus faecium/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Compostos de Espiro/isolamento & purificação , Naftacenos/química , Naftacenos/farmacologia
3.
Nat Prod Res ; 37(16): 2753-2758, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36125461

RESUMO

The manipulation of regulatory genes has been employed to awaken cryptic metabolites in Streptomyces. Of particular interest in recent years is the effect of disruption of a pathway-specific gene to other biosynthetic pathways. Herein, we report the inactivation of the accramycin pathway-specific regulatory gene, accJ in Streptomyces sp. MA37 resulted in the production of unrelated polyketide metabolites. Through detailed mass spectrometric and spectroscopic analyses, and comparison with literature data, their structures were deduced as 3-methoxy-2-methyl-4H-pyran-4-one (1), zanthopyranone (2), propioveratrone (3), and TW94a (4). To the best of our knowledge, this is the first report of the isolation of 1-3 from bacteria. Compounds 1, 2, and 4 showed weak to moderate activity against Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium. Propioveratrone (3) displayed better inhibitory activity (MIC = 6.3 µg/mL) than ampicillin against multi-drug resistant E. faecium K60-39 clinical isolate (MIC = 25 µg/mL), suggesting a promising structural template for the drug development targeting Enterococcus isolates.

4.
Biodivers Data J ; 9: e72537, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690519

RESUMO

BACKGROUND: Coral reefs offer valuable ecosystem goods and services, such as coastal protection, erosion regulation, fishery, biodiversity, habitat and nursery grounds. However, they face threats from anthropogenic activities, including poor water quality, global warming, coastal development and unsustainable fisheries. Marine Protected Areas (MPAs) provide a structured and holistic approach in addressing these threats. Regular monitoring and assessment of these MPAs are crucial components in evaluating the MPAs design and effectiveness. Two coral reefs (i.e. Poblacion and Kadurong Reefs) were established as MPAs in Liloan, Cebu, Philippines to protect crucial habitat and biodiversity with the hope of improving fisheries by avoiding fish stock disintegration. These coral reefs provide shelter to many commercially-significant fish species, supporting subsistence and livelihood in the community. These MPAs are not only biologically rich, but they also support socio-economic stability. Hence, management and protection of the coral reefs in the MPAs of Liloan, Cebu is of paramount importance. To formulate conservation and applicable management measures, research and monitoring should be in place. This paper presents the data collected from the short term monitoring in the Poblaction and Kadurong Reefs. The paper describes an important set of data that can be used by the stakeholders to benchmark biophysical assessments for management of marine-protected areas in Liloan. NEW INFORMATION: This data paper provides baseline information on the health of the coral reefs of the MPAs in Liloan, Cebu. Datasets covering physico-chemical and biological parameters inclusive of water quality, coral reef cover, fish and plankton occurrence and abundance were determined using the standard protocols for surveying tropical marine resources. The results will serve as a benchmark in formulating guidelines and implementing relevant policies for the effective management and protection of the MPAs in Liloan, Cebu, Philippines.

5.
Nat Prod Rep ; 38(4): 782-821, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33119013

RESUMO

Covering: up to the second quarter of 2020 Threat or treat? While pathogenic bacteria pose significant threats, they also represent a huge reservoir of potential pharmaceuticals to treat various diseases. The alarming antimicrobial resistance crisis and the dwindling clinical pipeline urgently call for the discovery and development of new antibiotics. Pathogenic bacteria have an enormous potential for natural products drug discovery, yet they remained untapped and understudied. Herein, we review the specialised metabolites isolated from entomopathogenic, phytopathogenic, and human pathogenic bacteria with antibacterial and antifungal activities, highlighting those currently in pre-clinical trials or with potential for drug development. Selected unusual biosynthetic pathways, the key roles they play (where known) in various ecological niches are described. We also provide an overview of the mode of action (molecular target), activity, and minimum inhibitory concentration (MIC) towards bacteria and fungi. The exploitation of pathogenic bacteria as a rich source of antimicrobials, combined with the recent advances in genomics and natural products research methodology, could pave the way for a new golden age of antibiotic discovery. This review should serve as a compendium to communities of medicinal chemists, organic chemists, natural product chemists, biochemists, clinical researchers, and many others interested in the subject.


Assuntos
Antibacterianos/isolamento & purificação , Bactérias/metabolismo , Produtos Biológicos/farmacologia , Antibacterianos/farmacologia , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Bactérias/química , Produtos Biológicos/isolamento & purificação , Descoberta de Drogas
6.
Biomolecules ; 10(10)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092156

RESUMO

Continued mining of natural products from the strain Streptomyces sp. MA37 in our laboratory led to the discovery of a minor specialized metabolite (SM) called accramycin A. Owing to its low yield (0.2 mg/L) in the wild type strain, we investigated the roles of regulatory genes in the corresponding biosynthetic gene cluster (acc BGC) through gene inactivation with the aim of improving the titer of this compound. One of the resulting mutants (∆accJ) dramatically upregulated the production of accramycin A 1 by 330-fold (66 mg/L). Furthermore, ten new metabolites, accramycins B-K 2-11, were discovered, together with two known compounds, naphthacemycin B112 and fasamycin C 13 from the mutant extract. This suggested that accJ, annotated as multiple antibiotic resistance regulator (MarR), is a negative regulator gene in the accramycin biosynthesis. Compounds 1-13 inhibited the Gram-positive pathogens (Staphylococcus aureus, Enterococcus faecalis) and clinical isolates Enterococcus faecium (K59-68 and K60-39) and Staphylococcus haemolyticus with minimal inhibitory concentration (MIC) values in the range of 1.5-12.5 µg/mL. Remarkably, compounds 1-13 displayed superior activity against K60-39 (MIC = 3.1-6.3 µg/mL) compared to ampicillin (MIC = 25 µg/mL), and offered promising potential for the development of accramycin-based antibiotics that target multidrug-resistant Enterococcus clinical isolates. Our results highlight the importance of identifying the roles of regulatory genes in natural product discovery.


Assuntos
Antibacterianos/farmacologia , Produtos Biológicos/farmacologia , Microbiologia do Solo , Streptomyces/química , Antibacterianos/química , Antibacterianos/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Enterococcus/efeitos dos fármacos , Enterococcus/patogenicidade , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/patogenicidade , Humanos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade
7.
Molecules ; 25(13)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610457

RESUMO

In this paper, we report on the chemistry of the rare South African Actinomycete Kribbella speibonae strain SK5, a prolific producer of hydroxamate siderophores and their congeners. Two new analogues, dehydroxylated desferrioxamines, speibonoxamine 1 and desoxy-desferrioxamine D1 2, have been isolated, together with four known hydroxamates, desferrioxamine D1 3, desferrioxamine B 4, desoxy-nocardamine 5 and nocardamine 6, and a diketopiperazine (DKP) 7. The structures of 1-7 were characterized by the analysis of HRESIMS and 1D and 2D NMR data, as well as by comparison with the relevant literature. Three new dehydroxy desferrioxamine derivatives 8-10 were tentatively identified in the molecular network of K. speibonae strain SK5 extracts, and structures were proposed based on their MS/MS fragmentation patterns. A plausible spb biosynthetic pathway was proposed. To the best of our knowledge, this is the first report of the isolation of desferrioxamines from the actinobacterial genus Kribbella.


Assuntos
Actinobacteria/química , Ácidos Hidroxâmicos/isolamento & purificação , RNA Ribossômico 16S/genética , Sideróforos/isolamento & purificação , Actinobacteria/genética , Actinomycetales/classificação , Actinomycetales/genética , Desferroxamina/química , Desferroxamina/metabolismo , Genes Bacterianos/genética , Ácidos Hidroxâmicos/química , Ferro/metabolismo , Sideróforos/química , Espectrometria de Massas em Tandem
8.
Molecules ; 25(5)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131464

RESUMO

Four compounds (1-4) were isolated from the extracts of Streptomyces sp. CT37 using bioassay in conjunction with mass spectrometric molecular networking (MN) driven isolation. Their complete structures were established by high-resolution electrospray ionization mass spectrometry (HR-ESIMS), and 1D and 2D nuclear magnetic resonance (NMR) data. Legonimide 1 was identified as a new alkaloid containing a rare linear imide motif in its structure, while compounds 2-4 were already known and their structures were elucidated as 1H-indole-3-carbaldehyde, actinopolymorphol B, (2R,3R)-1-phenylbutane-2,3-diol, respectively. The biosynthetic pathways of 1-4 were proposed based on the reported biogenesis of indole alkaloids in literature. Bioactivity tests for 1 and 2 revealed moderate growth inhibition activity against Candida albicans ATCC 10231 with MIC95 values of 21.54 µg/mL and 11.47 µg/mL, respectively.


Assuntos
Antifúngicos , Candida albicans/crescimento & desenvolvimento , Alcaloides Indólicos , Streptomyces/química , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Alcaloides Indólicos/química , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/farmacologia , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Massas por Ionização por Electrospray
9.
Org Biomol Chem ; 18(12): 2219-2222, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32159577

RESUMO

More than 500 siderophores are known to date, but only three were identified to be aryl-containing hydroxamate siderophores, legonoxamines A and B from Streptomyces sp. MA37, and aryl ferrioxamine 2 from Micrococcus luteus KLE1011. Siderophores are produced by microorganisms to scavenge iron from the environment, thereby making this essential metal nutrient available to the microbe. We demonstrate here that LgoC from MA37 is responsible for the key aryl-hydroxamate forming step in legonoxamine biosynthesis. Biochemical characterization established that LgoC displays considerable promiscuity for the acylation between N-hydroxy-cadaverine and SNAC (N-acetylcysteamines) thioester derivatives.


Assuntos
Coenzima A-Transferases/metabolismo , Sideróforos/metabolismo , Acilação , Proteínas de Bactérias/metabolismo , Ácidos Hidroxâmicos/química , Ferro/metabolismo , Micrococcus luteus/química , Sideróforos/biossíntese , Sideróforos/isolamento & purificação , Streptomyces/química , Streptomyces/enzimologia
10.
Curr Opin Chem Biol ; 55: 119-126, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32087550

RESUMO

The introduction of fluorine atoms into organic molecules has received considerable attention as these organofluorines have often found widespread applications in bioorganic chemistry, medicinal chemistry and biomaterial science. Despite innovation of synthetic C-F forming methodologies, selective fluorination is still extremely challenging. Therefore, a biotransformation approach using fluorine biocatalysts is needed to selectively introduce fluorine into structurally diverse molecules. Yet, there are few ways that enable incorporation of fluorine into structurally complex bioactive molecules. One is to extend the substrate scope of the existing enzyme inventory. Another is to expand the biosynthetic pathways to accept fluorinated precursors for producing fluorinated bioactive molecules. Finally, an understanding of the physiological roles of fluorometabolites in the producing microorganisms will advance our ability to engineer a microorganism to produce novel fluorinated commodities. Here, we review the fluorinase biotechnology and fluorine biocatalysts that incorporate fluorine motifs to generate fluorinated molecules, and highlight areas for future developments.


Assuntos
Proteínas de Bactérias/metabolismo , Flúor/química , Flúor/metabolismo , Oxirredutases/metabolismo , Biocatálise , Biotransformação , Halogenação , Hidroxiácidos/química , Estrutura Molecular , Estereoisomerismo , Transaminases/metabolismo
11.
Molecules ; 25(2)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936318

RESUMO

Whole-genome sequence data of the genus Streptomyces have shown a far greater chemical diversity of metabolites than what have been discovered under typical laboratory fermentation conditions. In our previous natural product discovery efforts on Streptomyces sp. MA37, a bacterium isolated from the rhizosphere soil sample in Legon, Ghana, we discovered a handful of specialised metabolites from this talented strain. However, analysis of the draft genome of MA37 suggested that most of the encoded biosynthetic gene clusters (BGCs) remained cryptic or silent, and only a small fraction of BGCs for the production of specialised metabolites were expressed when cultured in our laboratory conditions. In order to induce the expression of the seemingly silent BGCs, we have carried out a co-culture experiment by growing the MA37 strain with the Gram-negative bacterium Pseudomonas sp. in a co-culture chamber that allows co-fermentation of two microorganisms with no direct contact but allows exchange of nutrients, metabolites, and other chemical cues. This co-culture approach led to the upregulation of several metabolites that were not previously observed in the monocultures of each strain. Moreover, the co-culture induced the expression of the cryptic indole alkaloid BGC in MA37 and led to the characterization of the known indolocarbazole alkaloid, BE-13793C 1. Neither bacterium produced compound 1 when cultured alone. The structure of 1 was elucidated by Nuclear Magnetic Resonance (NMR), mass spectrometry analyses and comparison of experimental with literature data. A putative biosynthetic pathway of 1 was proposed. Furthermore, BE-13793C 1 showed strong anti-proliferative activity against HT-29 (ATCC HTB-38) cells but no toxic effect to normal lung (ATCC CCL-171) cells. To the best of our knowledge, this is the first report for the activity of 1 against HT-29. No significant antimicrobial and anti-trypanosomal activities for 1 were observed. This research provides a solid foundation for the fact that a co-culture approach paves the way for increasing the chemical diversity of strain MA37. Further characterization of other upregulated metabolites in this strain is currently ongoing in our laboratory.


Assuntos
Vias Biossintéticas , Técnicas de Cocultura/métodos , Alcaloides Indólicos/metabolismo , Metaboloma , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Bioensaio , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Células HT29 , Humanos , Alcaloides Indólicos/farmacologia , Testes de Sensibilidade Microbiana , Família Multigênica , Espectroscopia de Prótons por Ressonância Magnética , Pseudomonas/efeitos dos fármacos , Pseudomonas/metabolismo , Trypanosoma/efeitos dos fármacos
12.
Molecules ; 25(3)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979050

RESUMO

Streptomyces remains one of the prolific sources of structural diversity, and a reservoir to mine for novel natural products. Continued screening for new Streptomyces strains in our laboratory led to the isolation of Streptomyces sp. RK44 from the underexplored areas of Kintampo waterfalls, Ghana, Africa. Preliminary screening of the metabolites from this strain resulted in the characterization of a new 2-alkyl-4-hydroxymethylfuran carboxamide (AHFA) 1 together with five known compounds, cyclo-(L-Pro-Gly) 2, cyclo-(L-Pro-L-Phe) 3, cyclo-(L-Pro-L-Val) 4, cyclo-(L-Leu-Hyp) 5, and deferoxamine E 6. AHFA 1, a methylenomycin (MMF) homolog, exhibited anti-proliferative activity (EC50 = 89.6 µM) against melanoma A2058 cell lines. This activity, albeit weak is the first report amongst MMFs. Furthermore, the putative biosynthetic gene cluster (ahfa) was identified for the biosynthesis of AHFA 1. DFO-E 6 displayed potent anti-plasmodial activity (IC50 = 1.08µM) against P. falciparum 3D7. High-resolution electrospray ionization mass spectrometry (HR ESIMS) and molecular network assisted the targeted-isolation process, and tentatively identified six AHFA analogues, 7-12 and six siderophores 13-18.


Assuntos
Streptomyces/metabolismo , Antimaláricos/efeitos adversos , Antineoplásicos/efeitos adversos , Linhagem Celular Tumoral , Humanos , Família Multigênica/genética , Peptídeos/efeitos adversos , Peptídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray
13.
Molecules ; 24(18)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533358

RESUMO

Drug-like molecules are known to contain many different building blocks with great potential as pharmacophores for drug discovery. The continued search for unique scaffolds in our laboratory led to the isolation of a novel Ghanaian soil bacterium, Streptomyces sp. MA37. This strain produces many bioactive molecules, most of which belong to carbazoles, pyrrolizidines, and fluorinated metabolites. Further probing of the metabolites of MA37 has led to the discovery of a new naphthacene-type aromatic natural product, which we have named accramycin A 1. This molecule was isolated using an HPLC-photodiode array (PDA) guided isolation process and MS/MS molecular networking. The structure of 1 was characterized by detailed analysis of LC-MS, UV, 1D, and 2D NMR data. Preliminary studies on the antibacterial properties of 1 using Group B Streptococcus (GBS) produced a minimum inhibitory concentration (MIC) of 27 µg/mL. This represents the first report of such bioactivity amongst the naphthacene-type aromatic polyketides, and also suggests the possibility for the further development of potent molecules against GBS based on the accramycin scaffold. A putative acc biosynthetic pathway for accramycin, featuring a tridecaketide-specific type II polyketide synthase, was proposed.


Assuntos
Policetídeos/química , Policetídeos/isolamento & purificação , Microbiologia do Solo , Streptomyces/química , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Vias Biossintéticas , Genes Bacterianos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Família Multigênica , Policetídeos/metabolismo , Policetídeos/farmacologia , Streptomyces/genética , Streptomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA