Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648089

RESUMO

Cover crops, a soil conservation practice, can contribute to reducing disease pressure caused by Pseudomonas syringae, considered one of the most important bacterial plant pathogens. We recently demonstrated that phyllosphere (leaf surface) bacterial community structure changed when squash (Cucurbita pepo) was grown with a rye (Secale cereale) cover crop treatment, followed by a decrease of angular leaf spot (ALS) disease symptoms on squash caused by P. syringae pv. lachrymans. Application of biocontrol agents is a known agricultural practice to mitigate crop losses due to microbial disease. In this study, we tested the hypothesis that some phyllosphere bacteria promoted when squash are grown on cover crops could be isolated and used as a biocontrol agent to decrease ALS symptoms. We grew squash during a two-year field experiment using four agricultural practices: bare soil, cover crops, chemically terminated cover crops, and plastic cover. We sampled squash leaves at 3 different dates each year and constructed a collection of cultivable bacterial strains isolated from squash leaves and rye cover crop material. Each isolated strain was identified by 16S rRNA gene sequencing and used in in vitro (Petri dish) pathogen growth and in vivo (greenhouse) symptom control assays. Four bacterial isolates belonging to the genera Pseudarthrobacter, Pseudomonas, Delftia and Rhizobium were shown to inhibit P. syringae pv. lachrymans growth and ALS symptom development. Strikingly, the symptom control efficacy of all strains was stronger on older leaves. This study sheds light on the importance of bacterial isolation from cover crops sources to promote disease control.

2.
Microbiome ; 8(1): 70, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32438916

RESUMO

BACKGROUND: The phyllosphere is an important microbial habitat, but our understanding of how plant hosts drive the composition of their associated leaf microbial communities and whether taxonomic associations between plants and phyllosphere microbes represent adaptive matching remains limited. In this study, we quantify bacterial functional diversity in the phyllosphere of 17 tree species in a diverse neotropical forest using metagenomic shotgun sequencing. We ask how hosts drive the functional composition of phyllosphere communities and their turnover across tree species, using host functional traits and phylogeny. RESULTS: Neotropical tree phyllosphere communities are dominated by functions related to the metabolism of carbohydrates, amino acids, and energy acquisition, along with environmental signalling pathways involved in membrane transport. While most functional variation was observed within communities, there is non-random assembly of microbial functions across host species possessing different leaf traits. Metabolic functions related to biosynthesis and degradation of secondary compounds, along with signal transduction and cell-cell adhesion, were particularly important in driving the match between microbial functions and host traits. These microbial functions were also evolutionarily conserved across the host phylogeny. CONCLUSIONS: Functional profiling based on metagenomic shotgun sequencing offers evidence for the presence of a core functional microbiota across phyllosphere communities of neotropical trees. While functional turnover across phyllosphere communities is relatively small, the association between microbial functions and leaf trait gradients among host species supports a significant role for plant hosts as selective filters on phyllosphere community assembly. This interpretation is supported by the presence of phylogenetic signal for the microbial traits driving inter-community variation across the host phylogeny. Taken together, our results suggest that there is adaptive matching between phyllosphere microbes and their plant hosts. Video abstract.


Assuntos
Bactérias , Microbiota , Folhas de Planta , Árvores , Adaptação Fisiológica , Bactérias/genética , Biodiversidade , Florestas , Filogenia , Folhas de Planta/microbiologia , Árvores/microbiologia , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA