Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6941, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138162

RESUMO

Glucagon-like peptide 1 (GLP-1) stimulates insulin secretion and holds significant pharmacological potential. Nevertheless, the regulation of energy homeostasis by centrally-produced GLP-1 remains partially understood. Preproglucagon cells, known to release GLP-1, are found in the olfactory bulb (OB). We show that activating GLP-1 receptors (GLP-1R) in the OB stimulates insulin secretion in response to oral glucose in lean and diet-induced obese male mice. This is associated with reduced noradrenaline content in the pancreas and blocked by an α2-adrenergic receptor agonist, implicating functional involvement of the sympathetic nervous system (SNS). Inhibiting GABAA receptors in the paraventricular nucleus of the hypothalamus (PVN), the control centre of the SNS, abolishes the enhancing effect on insulin secretion induced by OB GLP-1R. Therefore, OB GLP-1-dependent regulation of insulin secretion relies on a relay within the PVN. This study provides evidence that OB GLP-1 signalling engages a top-down neural mechanism to control insulin secretion via the SNS.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Secreção de Insulina , Camundongos Endogâmicos C57BL , Bulbo Olfatório , Núcleo Hipotalâmico Paraventricular , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Masculino , Bulbo Olfatório/metabolismo , Bulbo Olfatório/efeitos dos fármacos , Secreção de Insulina/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Camundongos , Núcleo Hipotalâmico Paraventricular/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Sistema Nervoso Simpático/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Norepinefrina/metabolismo , Glucose/metabolismo
3.
Biochimie ; 223: 159-165, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38825062

RESUMO

The central nervous system continuously detects circulating concentrations of lipids such as fatty acids and troglycerides. Once information has been detected, the central nervous system can in turn participate in the control of energy balance and blood sugar levels and in particular regulate the secretion and action of insulin. Neurons capable of detecting circulating lipid variations are located in the hypothalamus and in other regions such as the nucleus accumbens, the striatum or the hippocampus. An excess of lipids will have deleterious effects and may induce central lipotoxicity, in particular following local production of ceramides and the appearance of neuroinflammation which may lead to metabolic diseases such as obesity and type 2 diabetes.


Assuntos
Metabolismo Energético , Humanos , Animais , Encéfalo/metabolismo , Metabolismo dos Lipídeos , Obesidade/metabolismo , Neurônios/metabolismo , Diabetes Mellitus Tipo 2/metabolismo
5.
J Lipid Res ; 65(6): 100548, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649096

RESUMO

DHA is abundant in the brain where it regulates cell survival, neurogenesis, and neuroinflammation. DHA can be obtained from the diet or synthesized from alpha-linolenic acid (ALA; 18:3n-3) via a series of desaturation and elongation reactions occurring in the liver. Tracer studies suggest that dietary DHA can downregulate its own synthesis, but the mechanism remains undetermined and is the primary objective of this manuscript. First, we show by tracing 13C content (δ13C) of DHA via compound-specific isotope analysis, that following low dietary DHA, the brain receives DHA synthesized from ALA. We then show that dietary DHA increases mouse liver and serum EPA, which is dependant on ALA. Furthermore, by compound-specific isotope analysis we demonstrate that the source of increased EPA is slowed EPA metabolism, not increased DHA retroconversion as previously assumed. DHA feeding alone or with ALA lowered liver elongation of very long chain (ELOVL2, EPA elongation) enzyme activity despite no change in protein content. To further evaluate the role of ELOVL2, a liver-specific Elovl2 KO was generated showing that DHA feeding in the presence or absence of a functional liver ELOVL2 yields similar results. An enzyme competition assay for EPA elongation suggests both uncompetitive and noncompetitive inhibition by DHA depending on DHA levels. To translate our findings, we show that DHA supplementation in men and women increases EPA levels in a manner dependent on a SNP (rs953413) in the ELOVL2 gene. In conclusion, we identify a novel feedback inhibition pathway where dietary DHA downregulates its liver synthesis by inhibiting EPA elongation.


Assuntos
Ácidos Docosa-Hexaenoicos , Regulação para Baixo , Ácido Eicosapentaenoico , Fígado , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/administração & dosagem , Animais , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Regulação para Baixo/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Ácido alfa-Linolênico/farmacologia , Ácido alfa-Linolênico/metabolismo , Ácido alfa-Linolênico/administração & dosagem
6.
Brain Behav Immun Health ; 37: 100745, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38511150

RESUMO

Preterm birth and its related complications have become more and more common as neonatal medicine advances. The concept of "developmental origins of health and disease" has raised awareness of adverse perinatal events in the development of diseases later in life. To explore this concept, we propose that encephalopathy of prematurity (EoP) as a potential pro-inflammatory early life event becomes a novel risk factor for metabolic diseases in children/adolescents and adulthood. Here, we review epidemiological evidence that links preterm birth to metabolic diseases and discuss possible synergic roles of preterm birth and neuroinflammation from EoP in the development of metabolic diseases. In addition, we explore theoretical underlying mechanisms regarding developmental programming of the energy control system and HPA axis.

7.
PLOS Digit Health ; 3(2): e0000447, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38335183

RESUMO

Distinguishing between alcohol-associated hepatitis (AH) and alcohol-associated cirrhosis (AC) remains a diagnostic challenge. In this study, we used machine learning with transcriptomics and proteomics data from liver tissue and peripheral mononuclear blood cells (PBMCs) to classify patients with alcohol-associated liver disease. The conditions in the study were AH, AC, and healthy controls. We processed 98 PBMC RNAseq samples, 55 PBMC proteomic samples, 48 liver RNAseq samples, and 53 liver proteomic samples. First, we built separate classification and feature selection pipelines for transcriptomics and proteomics data. The liver tissue models were validated in independent liver tissue datasets. Next, we built integrated gene and protein expression models that allowed us to identify combined gene-protein biomarker panels. For liver tissue, we attained 90% nested-cross validation accuracy in our dataset and 82% accuracy in the independent validation dataset using transcriptomic data. We attained 100% nested-cross validation accuracy in our dataset and 61% accuracy in the independent validation dataset using proteomic data. For PBMCs, we attained 83% and 89% accuracy with transcriptomic and proteomic data, respectively. The integration of the two data types resulted in improved classification accuracy for PBMCs, but not liver tissue. We also identified the following gene-protein matches within the gene-protein biomarker panels: CLEC4M-CLC4M, GSTA1-GSTA2 for liver tissue and SELENBP1-SBP1 for PBMCs. In this study, machine learning models had high classification accuracy for both transcriptomics and proteomics data, across liver tissue and PBMCs. The integration of transcriptomics and proteomics into a multi-omics model yielded improvement in classification accuracy for the PBMC data. The set of integrated gene-protein biomarkers for PBMCs show promise toward developing a liquid biopsy for alcohol-associated liver disease.

8.
Food Res Int ; 177: 113850, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225125

RESUMO

Interesterified fats have been used to replace trans-fat in ultra-processed foods. However, their metabolic effects are not completely understood. Hence, this study aimed to investigate the effects related to glucose homeostasis in response to interesterified palm oil or refined palm oil intake. Four-week-old male Swiss mice were randomly divided into four experimental groups and fed the following diets for 8 weeks: a normocaloric and normolipidic diet containing refined palm oil (PO group) or interesterified palm oil (IPO group); a hypercaloric and high-fat diet containing refined PO (POHF group) or interesterified PO (IPOHF group). Metabolic parameters related to body mass, adiposity and food consumption showed no significant differences. As for glucose homeostasis parameters, interesterified palm oil diets (IPO and IPOHF) resulted in higher glucose intolerance than unmodified palm oil diets (PO and POHF). Euglycemic-hyperinsulinemic clamp assessment showed a higher endogenous glucose production in the IPO group compared with the PO group. Moreover, the IPO group showed significantly lower p-AKT protein content (in the muscle and liver tissues) when compared with the PO group. Analysis of glucose-stimulated static insulin secretion (11.1 mmol/L glucose) in isolated pancreatic islets showed a higher insulin secretion in animals fed interesterified fat diets (IPO and IPOHF) than in those fed with palm oil (PO and POHF). Interesterified palm oil, including in normolipidic diets, can impair insulin signaling in peripheral tissues and increase insulin secretion by ß-cells, characterizing insulin resistance in mice.


Assuntos
Resistência à Insulina , Masculino , Animais , Camundongos , Óleo de Palmeira , Óleos de Plantas , Gorduras na Dieta , Secreção de Insulina , Ácidos Graxos/análise , Dieta Hiperlipídica/efeitos adversos , Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA