Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38843491

RESUMO

The human airway mucociliary epithelium can be recapitulated in vitro using primary cells cultured in an Air-Liquid Interface (ALI), a reliable surrogate to perform pathophysiological studies. As tremendous variations exist between media used for ALI-cultured human airway epithelial cells, our study aimed to evaluate the impact of several media (BEGMTM, PneumaCultTM, "Half&Half" and "Clancy") on cell type distribution using single-cell RNA sequencing and imaging. Our work revealed the impact of these media on cell composition, gene expression profile, cell signaling and epithelial morphology. We found higher proportions of multiciliated cells in PneumaCultTM-ALI and Half&Half, stronger EGF signaling from basal cells in BEGMTM-ALI, differential expression of the SARS-CoV-2 entry factor ACE2, and distinct secretome transcripts depending on media used. We also established that proliferation in PneumaCultTM-Ex Plus favored secretory cell fate, showing the key influence of proliferation media on late differentiation epithelial characteristics. Altogether, our data offer a comprehensive repertoire for evaluating the effects of culture conditions on airway epithelial differentiation and will help to choose the most relevant medium according to the processes to be investigated such as cilia, mucus biology or viral infection. We detail useful parameters that should be explored to document airway epithelial cell fate and morphology.

2.
Cancers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38730619

RESUMO

Pediatric T-cell Acute Lymphoblastic Leukemia (T-ALL) relapses are still associated with a dismal outcome, justifying the search for new therapeutic targets and relapse biomarkers. Using single-cell RNA sequencing (scRNAseq) data from three paired samples of pediatric T-ALL at diagnosis and relapse, we first conducted a high-dimensional weighted gene co-expression network analysis (hdWGCNA). This analysis highlighted several gene co-expression networks (GCNs) and identified relapse-associated hub genes, which are considered potential driver genes. Shared relapse-expressed genes were found to be related to antigen presentation (HLA, B2M), cytoskeleton remodeling (TUBB, TUBA1B), translation (ribosomal proteins, EIF1, EEF1B2), immune responses (MIF, EMP3), stress responses (UBC, HSP90AB1/AA1), metabolism (FTH1, NME1/2, ARCL4C), and transcriptional remodeling (NF-κB family genes, FOS-JUN, KLF2, or KLF6). We then utilized sparse partial least squares discriminant analysis to select from a pool of 481 unique leukemic hub genes, which are the genes most discriminant between diagnosis and relapse states (comprising 44, 35, and 31 genes, respectively, for each patient). Applying a Cox regression method to these patient-specific genes, along with transcriptomic and clinical data from the TARGET-ALL AALL0434 cohort, we generated three model gene signatures that efficiently identified relapsed patients within the cohort. Overall, our approach identified new potential relapse-associated genes and proposed three model gene signatures associated with lower survival rates for high-score patients.

3.
Front Bioinform ; 4: 1340339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501112

RESUMO

Single-cell CRISPR-based transcriptome screens are potent genetic tools for concomitantly assessing the expression profiles of cells targeted by a set of guides RNA (gRNA), and inferring target gene functions from the observed perturbations. However, due to various limitations, this approach lacks sensitivity in detecting weak perturbations and is essentially reliable when studying master regulators such as transcription factors. To overcome the challenge of detecting subtle gRNA induced transcriptomic perturbations and classifying the most responsive cells, we developed a new supervised autoencoder neural network method. Our Sparse supervised autoencoder (SSAE) neural network provides selection of both relevant features (genes) and actual perturbed cells. We applied this method on an in-house single-cell CRISPR-interference-based (CRISPRi) transcriptome screening (CROP-Seq) focusing on a subset of long non-coding RNAs (lncRNAs) regulated by hypoxia, a condition that promote tumor aggressiveness and drug resistance, in the context of lung adenocarcinoma (LUAD). The CROP-seq library of validated gRNA against a subset of lncRNAs and, as positive controls, HIF1A and HIF2A, the 2 main transcription factors of the hypoxic response, was transduced in A549 LUAD cells cultured in normoxia or exposed to hypoxic conditions during 3, 6 or 24 h. We first validated the SSAE approach on HIF1A and HIF2 by confirming the specific effect of their knock-down during the temporal switch of the hypoxic response. Next, the SSAE method was able to detect stable short hypoxia-dependent transcriptomic signatures induced by the knock-down of some lncRNAs candidates, outperforming previously published machine learning approaches. This proof of concept demonstrates the relevance of the SSAE approach for deciphering weak perturbations in single-cell transcriptomic data readout as part of CRISPR-based screening.

4.
Hortic Res ; 10(6): uhad068, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37287445

RESUMO

Prior exposure to microbial-associated molecular patterns or specific chemical compounds can promote plants into a primed state with stronger defence responses. ß-aminobutyric acid (BABA) is an endogenous stress metabolite that induces resistance protecting various plants towards diverse stresses. In this study, by integrating BABA-induced changes in selected metabolites with transcriptome and proteome data, we generated a global map of the molecular processes operating in BABA-induced resistance (BABA-IR) in tomato. BABA significantly restricts the growth of the pathogens Oidium neolycopersici and Phytophthora parasitica but not Botrytis cinerea. A cluster analysis of the upregulated processes showed that BABA acts mainly as a stress factor in tomato. The main factor distinguishing BABA-IR from other stress conditions was the extensive induction of signaling and perception machinery playing a key role in effective resistance against pathogens. Interestingly, the signalling processes and immune response activated during BABA-IR in tomato differed from those in Arabidopsis with substantial enrichment of genes associated with jasmonic acid (JA) and ethylene (ET) signalling and no change in Asp levels. Our results revealed key differences between the effect of BABA on tomato and other model plants studied until now. Surprisingly, salicylic acid (SA) is not involved in BABA downstream signalization whereas ET and JA play a crucial role.

5.
Cell Stem Cell ; 30(6): 800-817.e9, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267915

RESUMO

Cholesterol efflux pathways could be exploited in tumor biology to unravel cancer vulnerabilities. A mouse model of lung-tumor-bearing KRASG12D mutation with specific disruption of cholesterol efflux pathways in epithelial progenitor cells promoted tumor growth. Defective cholesterol efflux in epithelial progenitor cells governed their transcriptional landscape to support their expansion and create a pro-tolerogenic tumor microenvironment (TME). Overexpression of the apolipoprotein A-I, to raise HDL levels, protected these mice from tumor development and dire pathologic consequences. Mechanistically, HDL blunted a positive feedback loop between growth factor signaling pathways and cholesterol efflux pathways that cancer cells hijack to expand. Cholesterol removal therapy with cyclodextrin reduced tumor burden in progressing tumor by suppressing the proliferation and expansion of epithelial progenitor cells of tumor origin. Local and systemic perturbations of cholesterol efflux pathways were confirmed in human lung adenocarcinoma (LUAD). Our results position cholesterol removal therapy as a putative metabolic target in lung cancer progenitor cells.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Colesterol/metabolismo , Neoplasias Pulmonares/genética , Proliferação de Células , Pulmão , Células-Tronco/metabolismo , Apolipoproteína A-I/metabolismo , Microambiente Tumoral
6.
FEBS Lett ; 597(12): 1623-1637, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37102425

RESUMO

The MIR449 genomic locus encompasses several regulators of multiciliated cell (MCC) formation (multiciliogenesis). The miR-449 homologs miR-34b/c represent additional regulators of multiciliogenesis that are transcribed from another locus. Here, we characterized the expression of BTG4, LAYN, and HOATZ, located in the MIR34B/C locus using single-cell RNA-seq and super-resolution microscopy from human, mouse, or pig multiciliogenesis models. BTG4, LAYN, and HOATZ transcripts were expressed in both precursors and mature MCCs. The Layilin/LAYN protein was absent from primary cilia, but it was expressed in apical membrane regions or throughout motile cilia. LAYN silencing altered apical actin cap formation and multiciliogenesis. HOATZ protein was detected in primary cilia or throughout motile cilia. Altogether, our data suggest that the MIR34B/C locus may gather potential actors of multiciliogenesis.


Assuntos
Cílios , MicroRNAs , Humanos , Camundongos , Animais , Suínos , Cílios/genética , Cílios/metabolismo , Actinas/metabolismo , Genoma , Genômica , MicroRNAs/genética , MicroRNAs/metabolismo , Lectinas Tipo C/metabolismo
7.
Cell Rep ; 39(11): 110949, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705045

RESUMO

Despite the ubiquitous function of macrophages across the body, the diversity, origin, and function of adrenal gland macrophages remain largely unknown. We define the heterogeneity of adrenal gland immune cells using single-cell RNA sequencing and use genetic models to explore the developmental mechanisms yielding macrophage diversity. We define populations of monocyte-derived and embryonically seeded adrenal gland macrophages and identify a female-specific subset with low major histocompatibility complex (MHC) class II expression. In adulthood, monocyte recruitment dominates adrenal gland macrophage maintenance in female mice. Adrenal gland macrophage sub-tissular distribution follows a sex-dimorphic pattern, with MHC class IIlow macrophages located at the cortico-medullary junction. Macrophage sex dimorphism depends on the presence of the cortical X-zone. Adrenal gland macrophage depletion results in altered tissue homeostasis, modulated lipid metabolism, and decreased local aldosterone production during stress exposure. Overall, these data reveal the heterogeneity of adrenal gland macrophages and point toward sex-restricted distribution and functions of these cells.


Assuntos
Glândulas Suprarrenais , Macrófagos , Monócitos , Caracteres Sexuais , Glândulas Suprarrenais/metabolismo , Animais , Feminino , Antígenos de Histocompatibilidade Classe II/genética , Contagem de Leucócitos , Macrófagos/metabolismo , Masculino , Camundongos
8.
Pharmaceutics ; 14(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35631574

RESUMO

Despite the development of new therapeutic strategies, cancer remains one of the leading causes of mortality worldwide. One of the current major challenges is the resistance of cancers to chemotherapy treatments inducing metastases and relapse of the tumor. The Hedgehog receptor Patched (Ptch1) is overexpressed in many types of cancers. We showed that Ptch1 contributes to the efflux of doxorubicin and plays an important role in the resistance to chemotherapy in adrenocortical carcinoma (ACC), a rare cancer which presents strong resistance to the standard of care chemotherapy treatment. In the present study, we isolated and characterized a subpopulation of the ACC cell line H295R in which Ptch1 is overexpressed and more present at the cell surface. This cell subpopulation is more resistant to doxorubicin, grows as spheroids, and has a greater capability of clonogenicity, migration, and invasion than the parental cells. Xenograft experiments performed in mice and in ovo showed that this cell subpopulation is more tumorigenic and metastatic than the parental cells. These results suggest that this cell subpopulation has cancer stem-like or persistent cell properties which were strengthened by RNA-seq. If present in tumors from ACC patients, these cells could be responsible for therapy resistance, relapse, and metastases.

9.
Nat Commun ; 12(1): 5255, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489438

RESUMO

Monocytes are part of the mononuclear phagocytic system. Monocytes play a central role during inflammatory conditions and a better understanding of their dynamics might open therapeutic opportunities. In the present study, we focused on the characterization and impact of monocytes on brown adipose tissue (BAT) functions during tissue remodeling. Single-cell RNA sequencing analysis of BAT immune cells uncovered a large diversity in monocyte and macrophage populations. Fate-mapping experiments demonstrated that the BAT macrophage pool requires constant replenishment from monocytes. Using a genetic model of BAT expansion, we found that brown fat monocyte numbers were selectively increased in this scenario. This observation was confirmed using a CCR2-binding radiotracer and positron emission tomography. Importantly, in line with their tissue recruitment, blood monocyte counts were decreased while bone marrow hematopoiesis was not affected. Monocyte depletion prevented brown adipose tissue expansion and altered its architecture. Podoplanin engagement is strictly required for BAT expansion. Together, these data redefine the diversity of immune cells in the BAT and emphasize the role of monocyte recruitment for tissue remodeling.


Assuntos
Tecido Adiposo Marrom/citologia , Monócitos/fisiologia , Adiponectina/genética , Tecido Adiposo Marrom/fisiologia , Animais , Diferenciação Celular/genética , Contagem de Leucócitos , Macrófagos/citologia , Macrófagos/fisiologia , Glicoproteínas de Membrana/metabolismo , Camundongos Transgênicos , Monócitos/citologia , Tomografia por Emissão de Pósitrons , Receptores CCR2/genética , Receptores CCR2/metabolismo
10.
Cells ; 10(7)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34360002

RESUMO

Fibrosis is a deleterious invasion of tissues associated with many pathological conditions, such as Duchenne muscular dystrophy (DMD) for which no cure is at present available for its prevention or its treatment. Fibro-adipogenic progenitors (FAPs) are resident cells in the human skeletal muscle and can differentiate into myofibroblasts, which represent the key cell population responsible for fibrosis. In this study, we delineated the pool of microRNAs (miRNAs) that are specifically modulated by TGFß1 in FAPs versus myogenic progenitors (MPs) by a global miRNome analysis. A subset of candidates, including several "FibromiRs", was found differentially expressed between FAPs and MPs and was also deregulated in DMD versus healthy biopsies. Among them, the expression of the TGFß1-induced miR-199a~214 cluster was strongly correlated with the fibrotic score in DMD biopsies. Loss-of-function experiments in FAPs indicated that a miR-214-3p inhibitor efficiently blocked expression of fibrogenic markers in both basal conditions and following TGFß1 stimulation. We found that FGFR1 is a functional target of miR-214-3p, preventing the signaling of the anti-fibrotic FGF2 pathway during FAP fibrogenesis. Overall, our work demonstrates that the « FibromiR ¼ miR-214-3p is a key activator of FAP fibrogenesis by modulating the FGF2/FGFR1/TGFß axis, opening new avenues for the treatment of DMD.


Assuntos
Fator 2 de Crescimento de Fibroblastos/genética , MicroRNAs/genética , Distrofia Muscular de Duchenne/genética , Miofibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta1/genética , Adipócitos/metabolismo , Adipócitos/patologia , Adipogenia/genética , Adolescente , Adulto , Sequência de Bases , Diferenciação Celular , Criança , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibrose , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Miofibroblastos/patologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Células-Tronco/patologia , Fator de Crescimento Transformador beta1/metabolismo
11.
Oncogene ; 40(14): 2621, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33686243

RESUMO

Lung cancer is the leading cause of cancer death worldwide, with poor prognosis and a high rate of recurrence despite early surgical removal. Hypoxic regions within tumors represent sources of aggressiveness and resistance to therapy. Although long non-coding RNAs (lncRNAs) are increasingly recognized as major gene expression regulators, their regulation and function following hypoxic stress are still largely unexplored. Combining profiling studies on early-stage lung adenocarcinoma (LUAD) biopsies and on A549 LUAD cell lines cultured in normoxic or hypoxic conditions, we identified a subset of lncRNAs that are both correlated with the hypoxic status of tumors and regulated by hypoxia in vitro. We focused on a new transcript, Nuclear LUCAT1 (NLUCAT1), which is strongly upregulated by hypoxia in vitro and correlated with hypoxic markers and poor prognosis in LUADs. Full molecular characterization showed that NLUCAT1 is a large nuclear transcript composed of six exons and mainly regulated by NF-κB and NRF2 transcription factors. CRISPR-Cas9-mediated invalidation of NLUCAT1 revealed a decrease in proliferative and invasive properties, an increase in oxidative stress and a higher sensitivity to cisplatin-induced apoptosis. Transcriptome analysis of NLUCAT1-deficient cells showed repressed genes within the antioxidant and/or cisplatin-response networks. We demonstrated that the concomitant knockdown of four of these genes products, GPX2, GLRX, ALDH3A1, and PDK4, significantly increased ROS-dependent caspase activation, thus partially mimicking the consequences of NLUCAT1 inactivation in LUAD cells. Overall, we demonstrate that NLUCAT1 contributes to an aggressive phenotype in early-stage hypoxic tumors, suggesting it may represent a new potential therapeutic target in LUADs.

12.
Cell Death Differ ; 28(6): 1990-2000, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33462406

RESUMO

Intratumor heterogeneity has been recognized in numerous cancers as a major source of metastatic dissemination. In uveal melanomas, the existence and identity of specific subpopulations, their biological function and their contribution to metastasis remain unknown. Here, in multiscale analyses using single-cell RNA sequencing of six different primary uveal melanomas, we uncover an intratumoral heterogeneity at the genomic and transcriptomic level. We identify distinct transcriptional cell states and diverse tumor-associated populations in a subset of the samples. We also decipher a gene regulatory network underlying an invasive and poor prognosis state driven in part by the transcription factor HES6. HES6 heterogenous expression has been validated by RNAscope assays within primary human uveal melanomas, which further unveils the existence of these cells conveying a dismal prognosis in tumors diagnosed with a favorable outcome using bulk analyses. Depletion of HES6 impairs proliferation, migration and metastatic dissemination in vitro and in vivo using the chick chorioallantoic membrane assay, demonstrating the essential role of HES6 in uveal melanomas. Thus, single-cell analysis offers an unprecedented view of primary uveal melanoma heterogeneity, identifies bona fide biomarkers for metastatic cells in the primary tumor, and reveals targetable modules driving growth and metastasis formation. Significantly, our findings demonstrate that HES6 is a valid target to stop uveal melanoma progression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Melanoma/genética , Proteínas Repressoras/metabolismo , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Neoplasias Uveais/genética , Linhagem Celular Tumoral , Humanos , Metástase Neoplásica , Prognóstico
13.
PLoS Pathog ; 16(10): e1008660, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33075093

RESUMO

Mammary carcinoma, including triple-negative breast carcinomas (TNBC) are tumor-types for which human and canine pathologies are closely related at the molecular level. The efficacy of an oncolytic vaccinia virus (VV) was compared in low-passage primary carcinoma cells from TNBC versus non-TNBC. Non-TNBC cells were 28 fold more sensitive to VV than TNBC cells in which VV replication is impaired. Single-cell RNA-seq performed on two different TNBC cell samples, infected or not with VV, highlighted three distinct populations: naïve cells, bystander cells, defined as cells exposed to the virus but not infected and infected cells. The transcriptomes of these three populations showed striking variations in the modulation of pathways regulated by cytokines and growth factors. We hypothesized that the pool of genes expressed in the bystander populations was enriched in antiviral genes. Bioinformatic analysis suggested that the reduced activity of the virus was associated with a higher mesenchymal status of the cells. In addition, we demonstrated experimentally that high expression of one gene, DDIT4, is detrimental to VV production. Considering that DDIT4 is associated with a poor prognosis in various cancers including TNBC, our data highlight DDIT4 as a candidate resistance marker for oncolytic poxvirus therapy. This information could be used to design new generations of oncolytic poxviruses. Beyond the field of gene therapy, this study demonstrates that single-cell transcriptomics can be used to identify cellular factors influencing viral replication.


Assuntos
Neoplasias Mamárias Animais/metabolismo , Terapia Viral Oncolítica/métodos , Fatores de Transcrição/metabolismo , Transcriptoma , Vaccinia virus/genética , Vacínia/metabolismo , Replicação Viral , Animais , Biologia Computacional , Cães , Feminino , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/terapia , Neoplasias Mamárias Animais/virologia , Análise de Célula Única , Fatores de Transcrição/genética , Vacínia/genética , Vacínia/virologia
14.
Genome Res ; 30(11): 1633-1642, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32973039

RESUMO

To gain better insight into the dynamic interaction between cells and their environment, we developed the agonist-induced functional analysis and cell sorting (aiFACS) technique, which allows the simultaneous recording and sorting of cells in real-time according to their immediate and individual response to a stimulus. By modulating the aiFACS selection parameters, testing different developmental times, using various stimuli, and multiplying the analysis of readouts, it is possible to analyze cell populations of any normal or pathological tissue. The association of aiFACS with single-cell transcriptomics allows the construction of functional tissue cartography based on specific pharmacological responses of cells. As a proof of concept, we used aiFACS on the dissociated mouse brain, a highly heterogeneous tissue, enriching it in interneurons by stimulation with KCl or with AMPA, an agonist of the glutamate receptors, followed by sorting based on calcium levels. After AMPA stimulus, single-cell transcriptomics of these aiFACS-selected interneurons resulted in a nine-cluster classification. Furthermore, we used aiFACS on interneurons derived from the brain of the Fmr1-KO mouse, a rodent model of fragile X syndrome. We showed that these interneurons manifest a generalized defective response to AMPA compared with wild-type cells, affecting all the analyzed cell clusters at one specific postnatal developmental time.


Assuntos
Encéfalo/metabolismo , Separação Celular/métodos , Citometria de Fluxo/métodos , Interneurônios/metabolismo , RNA-Seq , Análise de Célula Única , Encéfalo/citologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Técnicas de Inativação de Genes , Interneurônios/efeitos dos fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
15.
Cell Rep ; 32(10): 108116, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32905761

RESUMO

CD1d-restricted invariant Natural Killer T (iNKT) cells represent a unique class of T lymphocytes endowed with potent regulatory and effector immune functions. Although these functions are acquired during thymic ontogeny, the sequence of events that gives rise to discrete effector subsets remains unclear. Using an unbiased single-cell transcriptomic analysis combined with functional assays, we reveal an unappreciated diversity among thymic iNKT cells, especially among iNKT1 cells. Mathematical modeling and biological methods unravel a developmental map whereby iNKT2 cells constitute a transient branching point toward the generation of iNKT1 and iNKT17 cells, which reconciles the two previously proposed models. In addition, we identify the transcription co-factor Four-and-a-half LIM domains protein 2 (FHL2) as a critical cell-intrinsic regulator of iNKT1 specification. Thus, these data illustrate the changing transcriptional network that guides iNKT cell effector fate.


Assuntos
Células T Matadoras Naturais/imunologia , Análise de Célula Única/métodos , Diferenciação Celular , Humanos
16.
Nat Commun ; 11(1): 4025, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788667

RESUMO

Droplet-based high throughput single cell sequencing techniques tremendously advanced our insight into cell-to-cell heterogeneity. However, those approaches only allow analysis of one extremity of the transcript after short read sequencing. In consequence, information on splicing and sequence heterogeneity is lost. To overcome this limitation, several approaches that use long-read sequencing were introduced recently. Yet, those techniques are limited by low sequencing depth and/or lacking or inaccurate assignment of unique molecular identifiers (UMIs), which are critical for elimination of PCR bias and artifacts. We introduce ScNaUmi-seq, an approach that combines the high throughput of Oxford Nanopore sequencing with an accurate cell barcode and UMI assignment strategy. UMI guided error correction allows to generate high accuracy full length sequence information with the 10x Genomics single cell isolation system at high sequencing depths. We analyzed transcript isoform diversity in embryonic mouse brain and show that ScNaUmi-seq allows defining splicing and SNVs (RNA editing) at a single cell level.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento por Nanoporos , Nanoporos , Transcriptoma , Animais , Encéfalo , Expressão Gênica , Perfilação da Expressão Gênica , Genômica , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas , Receptores de AMPA/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos
17.
Am J Respir Crit Care Med ; 202(12): 1636-1645, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32726565

RESUMO

Rationale: The respiratory tract constitutes an elaborate line of defense that is based on a unique cellular ecosystem.Objectives: We aimed to investigate cell population distributions and transcriptional changes along the airways by using single-cell RNA profiling.Methods: We have explored the cellular heterogeneity of the human airway epithelium in 10 healthy living volunteers by single-cell RNA profiling. A total of 77,969 cells were collected at 35 distinct locations, from the nose to the 12th division of the airway tree.Measurements and Main Results: The resulting atlas is composed of a high percentage of epithelial cells (89.1%) but also immune (6.2%) and stromal (4.7%) cells with distinct cellular proportions in different regions of the airways. It reveals differential gene expression between identical cell types (suprabasal, secretory, and multiciliated cells) from the nose (MUC4, PI3, SIX3) and tracheobronchial (SCGB1A1, TFF3) airways. By contrast, cell-type-specific gene expression is stable across all tracheobronchial samples. Our atlas improves the description of ionocytes, pulmonary neuroendocrine cells, and brush cells and identifies a related population of NREP-positive cells. We also report the association of KRT13 with dividing cells that are reminiscent of previously described mouse "hillock" cells and with squamous cells expressing SCEL and SPRR1A/B.Conclusions: Robust characterization of a single-cell cohort in healthy airways establishes a valuable resource for future investigations. The precise description of the continuum existing from the nasal epithelium to successive divisions of the airways and the stable gene expression profile of these regions better defines conditions under which relevant tracheobronchial proxies of human respiratory diseases can be developed.


Assuntos
Brônquios/citologia , Brônquios/crescimento & desenvolvimento , Diferenciação Celular/genética , Proliferação de Células/genética , Células Epiteliais/citologia , Mucosa Nasal/citologia , Mucosa Nasal/crescimento & desenvolvimento , Células Estromais/citologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Regulação da Expressão Gênica , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade
18.
Development ; 146(20)2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31558434

RESUMO

The upper airway epithelium, which is mainly composed of multiciliated, goblet, club and basal cells, ensures proper mucociliary function and can regenerate in response to assaults. In chronic airway diseases, defective repair leads to tissue remodeling. Delineating key drivers of differentiation dynamics can help understand how normal or pathological regeneration occurs. Using single-cell transcriptomics and lineage inference, we have unraveled trajectories from basal to luminal cells, providing novel markers for specific populations. We report that: (1) a precursor subgroup of multiciliated cells, which we have entitled deuterosomal cells, is defined by specific markers, such as DEUP1, FOXN4, YPEL1, HES6 and CDC20B; (2) goblet cells can be precursors of multiciliated cells, thus explaining the presence of hybrid cells that co-express markers of goblet and multiciliated cells; and (3) a repertoire of molecules involved in the regeneration process, such as keratins or components of the Notch, Wnt or BMP/TGFß pathways, can be identified. Confirmation of our results on fresh human and pig airway samples, and on mouse tracheal cells, extend and confirm our conclusions regarding the molecular and cellular choreography at work during mucociliary epithelial differentiation.


Assuntos
Diferenciação Celular/fisiologia , Células Epiteliais/citologia , Células Caliciformes/citologia , Mucosa Respiratória/citologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Células Epiteliais/metabolismo , Células Caliciformes/metabolismo , Humanos , Camundongos , RNA-Seq , Mucosa Respiratória/metabolismo , Suínos , Traqueia/citologia , Traqueia/metabolismo
19.
Oncogene ; 38(46): 7146-7165, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31417181

RESUMO

Lung cancer is the leading cause of cancer death worldwide, with poor prognosis and a high rate of recurrence despite early surgical removal. Hypoxic regions within tumors represent sources of aggressiveness and resistance to therapy. Although long non-coding RNAs (lncRNAs) are increasingly recognized as major gene expression regulators, their regulation and function following hypoxic stress are still largely unexplored. Combining profiling studies on early-stage lung adenocarcinoma (LUAD) biopsies and on A549 LUAD cell lines cultured in normoxic or hypoxic conditions, we identified a subset of lncRNAs that are both correlated with the hypoxic status of tumors and regulated by hypoxia in vitro. We focused on a new transcript, NLUCAT1, which is strongly upregulated by hypoxia in vitro and correlated with hypoxic markers and poor prognosis in LUADs. Full molecular characterization showed that NLUCAT1 is a large nuclear transcript composed of six exons and mainly regulated by NF-κB and NRF2 transcription factors. CRISPR-Cas9-mediated invalidation of NLUCAT1 revealed a decrease in proliferative and invasive properties, an increase in oxidative stress and a higher sensitivity to cisplatin-induced apoptosis. Transcriptome analysis of NLUCAT1-deficient cells showed repressed genes within the antioxidant and/or cisplatin-response networks. We demonstrated that the concomitant knockdown of four of these genes products, GPX2, GLRX, ALDH3A1, and PDK4, significantly increased ROS-dependent caspase activation, thus partially mimicking the consequences of NLUCAT1 inactivation in LUAD cells. Overall, we demonstrate that NLUCAT1 contributes to an aggressive phenotype in early-stage hypoxic tumors, suggesting it may represent a new potential therapeutic target in LUADs.


Assuntos
Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Estresse Oxidativo/fisiologia , RNA Longo não Codificante/fisiologia , Adenocarcinoma de Pulmão/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/metabolismo , Fenótipo
20.
Am J Respir Crit Care Med ; 200(2): 184-198, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30964696

RESUMO

Rationale: Given the paucity of effective treatments for idiopathic pulmonary fibrosis (IPF), new insights into the deleterious mechanisms controlling lung fibroblast activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies. TGF-ß (transforming growth factor-ß) is the main profibrotic factor, but its inhibition is associated with severe side effects because of its pleiotropic role. Objectives: To determine if downstream noncoding effectors of TGF-ß in fibroblasts may represent new effective therapeutic targets whose modulation may be well tolerated. Methods: We investigated the whole noncoding fraction of TGF-ß-stimulated lung fibroblast transcriptome to identify new genomic determinants of lung fibroblast differentiation into myofibroblasts. Differential expression of the long noncoding RNA (lncRNA) DNM3OS (dynamin 3 opposite strand) and its associated microRNAs (miRNAs) was validated in a murine model of pulmonary fibrosis and in IPF tissue samples. Distinct and complementary antisense oligonucleotide-based strategies aiming at interfering with DNM3OS were used to elucidate the role of DNM3OS and its associated miRNAs in IPF pathogenesis. Measurements and Main Results: We identified DNM3OS as a fibroblast-specific critical downstream effector of TGF-ß-induced lung myofibroblast activation. Mechanistically, DNM3OS regulates this process in trans by giving rise to three distinct profibrotic mature miRNAs (i.e., miR-199a-5p/3p and miR-214-3p), which influence SMAD and non-SMAD components of TGF-ß signaling in a multifaceted way. In vivo, we showed that interfering with DNM3OS function not only prevents lung fibrosis but also improves established pulmonary fibrosis. Conclusions: Pharmacological approaches aiming at interfering with the lncRNA DNM3OS may represent new effective therapeutic strategies in IPF.


Assuntos
Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/genética , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta/metabolismo , Animais , Caveolina 1/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Camundongos , MicroRNAs/metabolismo , Miofibroblastos/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA