Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Med Imaging Graph ; 116: 102408, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38908295

RESUMO

Prostate Cancer is one of the most frequently occurring cancers in men, with a low survival rate if not early diagnosed. PI-RADS reading has a high false positive rate, thus increasing the diagnostic incurred costs and patient discomfort. Deep learning (DL) models achieve a high segmentation performance, although require a large model size and complexity. Also, DL models lack of feature interpretability and are perceived as "black-boxes" in the medical field. PCa-RadHop pipeline is proposed in this work, aiming to provide a more transparent feature extraction process using a linear model. It adopts the recently introduced Green Learning (GL) paradigm, which offers a small model size and low complexity. PCa-RadHop consists of two stages: Stage-1 extracts data-driven radiomics features from the bi-parametric Magnetic Resonance Imaging (bp-MRI) input and predicts an initial heatmap. To reduce the false positive rate, a subsequent stage-2 is introduced to refine the predictions by including more contextual information and radiomics features from each already detected Region of Interest (ROI). Experiments on the largest publicly available dataset, PI-CAI, show a competitive performance standing of the proposed method among other deep DL models, achieving an area under the curve (AUC) of 0.807 among a cohort of 1,000 patients. Moreover, PCa-RadHop maintains orders of magnitude smaller model size and complexity.

2.
Surgery ; 175(6): 1496-1502, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582732

RESUMO

Generative artificial intelligence is able to collect, extract, digest, and generate information in an understandable way for humans. As the first surgical applications of generative artificial intelligence are applied, this perspective paper aims to provide a comprehensive overview of current applications and future perspectives for the application of generative artificial intelligence in surgery, from preoperative planning to training. Generative artificial intelligence can be used before surgery for planning and decision support by extracting patient information and providing patients with information and simulation regarding the procedure. Intraoperatively, generative artificial intelligence can document data that is normally not captured as intraoperative adverse events or provide information to help decision-making. Postoperatively, GAIs can help with patient discharge and follow-up. The ability to provide real-time feedback and store it for later review is an important capability of GAIs. GAI applications are emerging as highly specialized, task-specific tools for tasks such as data extraction, synthesis, presentation, and communication within the realm of surgery. GAIs have the potential to play a pivotal role in facilitating interaction between surgeons and artificial intelligence.


Assuntos
Inteligência Artificial , Humanos , Procedimentos Cirúrgicos Operatórios/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA