Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Development ; 151(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446206

RESUMO

Inhibitor of growth 4 and 5 (ING4, ING5) are structurally similar chromatin-binding proteins in the KAT6A, KAT6B and KAT7 histone acetyltransferase protein complexes. Heterozygous mutations in the KAT6A or KAT6B gene cause human disorders with cardiac defects, but the contribution of their chromatin-adaptor proteins to development is unknown. We found that Ing5-/- mice had isolated cardiac ventricular septal defects. Ing4-/-Ing5-/- embryos failed to undergo chorioallantoic fusion and arrested in development at embryonic day 8.5, displaying loss of histone H3 lysine 14 acetylation, reduction in H3 lysine 23 acetylation levels and reduced developmental gene expression. Embryonic day 12.5 Ing4+/-Ing5-/- hearts showed a paucity of epicardial cells and epicardium-derived cells, failure of myocardium compaction, and coronary vasculature defects, accompanied by reduced expression of epicardium genes. Cell adhesion gene expression and proepicardium outgrowth were defective in the ING4- and ING5-deficient state. Our findings suggest that ING4 and ING5 are essential for heart development and promote epicardium and epicardium-derived cell fates and imply mutation of the human ING5 gene as a possible cause of isolated ventricular septal defects.


Assuntos
Proteínas de Transporte , Comunicação Interventricular , Lisina , Humanos , Animais , Camundongos , Linhagem da Célula , Histonas , Acetilação , Cromatina , Fatores de Transcrição , Proteínas Supressoras de Tumor , Proteínas de Homeodomínio/genética , Proteínas de Ciclo Celular , Histona Acetiltransferases
2.
J Virol ; 98(3): e0180223, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38334329

RESUMO

With a high incidence of acute kidney injury among hospitalized COVID-19 patients, considerable attention has been focussed on whether SARS-CoV-2 specifically targets kidney cells to directly impact renal function, or whether renal damage is primarily an indirect outcome. To date, several studies have utilized kidney organoids to understand the pathogenesis of COVID-19, revealing the ability for SARS-CoV-2 to predominantly infect cells of the proximal tubule (PT), with reduced infectivity following administration of soluble ACE2. However, the immaturity of standard human kidney organoids represents a significant hurdle, leaving the preferred SARS-CoV-2 processing pathway, existence of alternate viral receptors, and the effect of common hypertensive medications on the expression of ACE2 in the context of SARS-CoV-2 exposure incompletely understood. Utilizing a novel kidney organoid model with enhanced PT maturity, genetic- and drug-mediated inhibition of viral entry and processing factors confirmed the requirement for ACE2 for SARS-CoV-2 entry but showed that the virus can utilize dual viral spike protein processing pathways downstream of ACE2 receptor binding. These include TMPRSS- and CTSL/CTSB-mediated non-endosomal and endocytic pathways, with TMPRSS10 likely playing a more significant role in the non-endosomal pathway in renal cells than TMPRSS2. Finally, treatment with the antihypertensive ACE inhibitor, lisinopril, showed negligible impact on receptor expression or susceptibility of renal cells to infection. This study represents the first in-depth characterization of viral entry in stem cell-derived human kidney organoids with enhanced PTs, providing deeper insight into the renal implications of the ongoing COVID-19 pandemic. IMPORTANCE: Utilizing a human iPSC-derived kidney organoid model with improved proximal tubule (PT) maturity, we identified the mechanism of SARS-CoV-2 entry in renal cells, confirming ACE2 as the sole receptor and revealing redundancy in downstream cell surface TMPRSS- and endocytic Cathepsin-mediated pathways. In addition, these data address the implications of SARS-CoV-2 exposure in the setting of the commonly prescribed ACE-inhibitor, lisinopril, confirming its negligible impact on infection of kidney cells. Taken together, these results provide valuable insight into the mechanism of viral infection in the human kidney.


Assuntos
Enzima de Conversão de Angiotensina 2 , Rim , Organoides , SARS-CoV-2 , Internalização do Vírus , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/complicações , COVID-19/virologia , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/virologia , Lisinopril/farmacologia , Lisinopril/metabolismo , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/virologia , Pandemias , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos , Peptidil Dipeptidase A/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/virologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/virologia , Receptores de Coronavírus/metabolismo , Modelos Biológicos , Serina Endopeptidases/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Endossomos/virologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco/citologia
3.
Nat Protoc ; 18(11): 3229-3252, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770563

RESUMO

Kidney organoids derived from human pluripotent stem cells (hPSCs) are now being used as models of renal disease and nephrotoxicity screening. However, the proximal tubules (PTs), which are responsible for most kidney reabsorption functions, remain immature in kidney organoids with limited expression of critical transporters essential for nephron functionality. Here, we describe a protocol for improved specification of nephron progenitors from hPSCs that results in kidney organoids with elongated proximalized nephrons displaying improved PT maturity compared with those generated using standard kidney organoid protocols. We also describe a methodology for assessing the functionality of the PTs within the organoids and visualizing maturation markers via immunofluorescence. Using these assays, PT-enhanced organoids display increased expression of a range of critical transporters, translating to improved functionality measured by substrate uptake and transport. This protocol consists of an extended (13 d) monolayer differentiation phase, during which time hPSCs are exposed to nephron progenitor maintenance media (CDBLY2), better emulating human metanephric progenitor specification in vivo. Following nephron progenitor specification, the cells are aggregated and cultured as a three-dimensional micromass on an air-liquid interface to facilitate further differentiation and segmentation into proximalized nephrons. Experience in culturing hPSCs is required to conduct this protocol and expertise in kidney organoid generation is advantageous.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Pluripotentes , Humanos , Técnicas de Cultura de Células/métodos , Rim , Néfrons/metabolismo , Diferenciação Celular , Organoides
4.
Front Immunol ; 14: 1119750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275850

RESUMO

ING5 is a component of KAT6A and KAT7 histone lysine acetylation protein complexes. ING5 contains a PHD domain that binds to histone H3 lysine 4 when it is trimethylated, and so functions as a 'reader' and adaptor protein. KAT6A and KAT7 function are critical for normal hematopoiesis. To examine the function of ING5 in hematopoiesis, we generated a null allele of Ing5. Mice lacking ING5 during development had decreased foetal liver cellularity, decreased numbers of hematopoietic stem cells and perturbed erythropoiesis compared to wild-type control mice. Ing5-/- pups had hypoplastic spleens. Competitive transplantation experiments using foetal liver hematopoietic cells showed that there was no defect in long-term repopulating capacity of stem cells lacking ING5, suggesting that the defects during the foetal stage were not cell intrinsic. Together, these results suggest that ING5 function is dispensable for normal hematopoiesis but may be required for timely foetal hematopoiesis in a cell-extrinsic manner.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Fatores de Transcrição , Proteínas Supressoras de Tumor , Animais , Camundongos , Contagem de Células , Cromatina/genética , Fígado , Lisina , Proteínas Supressoras de Tumor/genética , Fatores de Transcrição/genética
5.
Nat Commun ; 13(1): 5943, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209212

RESUMO

While pluripotent stem cell-derived kidney organoids are now being used to model renal disease, the proximal nephron remains immature with limited evidence for key functional solute channels. This may reflect early mispatterning of the nephrogenic mesenchyme and/or insufficient maturation. Here we show that enhanced specification to metanephric nephron progenitors results in elongated and radially aligned proximalised nephrons with distinct S1 - S3 proximal tubule cell types. Such PT-enhanced organoids possess improved albumin and organic cation uptake, appropriate KIM-1 upregulation in response to cisplatin, and improved expression of SARS-CoV-2 entry factors resulting in increased viral replication. The striking proximo-distal orientation of nephrons resulted from localized WNT antagonism originating from the organoid stromal core. PT-enhanced organoids represent an improved model to study inherited and acquired proximal tubular disease as well as drug and viral responses.


Assuntos
COVID-19 , Doenças Transmissíveis , Albuminas/metabolismo , Diferenciação Celular/fisiologia , Cisplatino/metabolismo , Cisplatino/farmacologia , Doenças Transmissíveis/metabolismo , Humanos , Rim , Néfrons/metabolismo , Organoides/metabolismo , SARS-CoV-2
6.
bioRxiv ; 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35665006

RESUMO

While pluripotent stem cell-derived kidney organoids are now being used to model renal disease, the proximal nephron remains immature with limited evidence for key functional solute channels. This may reflect early mispatterning of the nephrogenic mesenchyme and/or insufficient maturation. Here we show that enhanced specification to metanephric nephron progenitors results in elongated and radially aligned proximalised nephrons with distinct S1 - S3 proximal tubule cell types. Such PT-enhanced organoids possess improved albumin and organic cation uptake, appropriate KIM-1 upregulation in response to cisplatin, and improved expression of SARS-CoV-2 entry factors resulting in increased viral replication. The striking proximo-distal orientation of nephrons resulted from localized WNT antagonism originating from the organoid stromal core. PT-enhanced organoids represent an improved model to study inherited and acquired proximal tubular disease as well as drug and viral responses.

7.
Stem Cell Reports ; 14(1): 105-121, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31902704

RESUMO

Human mesenchymal stem cell (hMSC) therapy offers significant potential for osteochondral regeneration. Such applications require their ex vivo expansion in media frequently supplemented with fibroblast growth factor 2 (FGF2). Particular heparan sulfate (HS) fractions stabilize FGF2-FGF receptor complexes. We show that an FGF2-binding HS variant (HS8) accelerates the expansion of freshly isolated bone marrow hMSCs without compromising their naivety. Importantly, the repair of osteochondral defects in both rats and pigs is improved after treatment with HS8-supplemented hMSCs (MSCHS8), when assessed histologically, biomechanically, or by MRI. Thus, supplementing hMSC culture media with an HS variant that targets endogenously produced FGF2 allows the elimination of exogenous growth factors that may adversely affect their therapeutic potency.


Assuntos
Glicosaminoglicanos/administração & dosagem , Transplante de Células-Tronco , Animais , Biomarcadores , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Células Cultivadas , Biologia Computacional , Relação Dose-Resposta a Droga , Expressão Gênica , Perfilação da Expressão Gênica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Ratos , Transplante de Células-Tronco/efeitos adversos , Transplante de Células-Tronco/métodos , Homeostase do Telômero/efeitos dos fármacos
8.
Methods ; 77-78: 157-63, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25542098

RESUMO

PTEN was discovered as a membrane-associated tumor suppressor protein nearly two decades ago, but the concept that it can be secreted and taken up by recipient cells is revolutionary. Since then, various laboratories have reported that PTEN is indeed secreted and available for uptake by other cells in at least two different guises. First, PTEN may be packaged and exported within extracellular vesicles (EV) called exosomes. Second, PTEN may also be secreted as a naked protein in a longer isoform called PTEN-long. While the conditions favouring the secretion of PTEN-long remain unknown, PTEN secretion in exosomes is enhanced by the Ndfip1/Nedd4 ubiquitination system. In this report, we describe conditions for packaging PTEN in exosomes and their potential use for mediating non cell-autonomous functions in recipient cells. We suggest that this mode of PTEN transfer may potentially provide beneficial PTEN for tumor suppression, however it may also propagate deleterious versions of mutated PTEN causing tumorigenesis.


Assuntos
Exossomos/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA