Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 12853, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553413

RESUMO

Sugarcane root system comprises of superficial sett roots as well as deeply-penetrating shoot borne roots (SBR) with latter being the permanent root system. In sugarcane, the healthy SBR contributes to a better crop yield and it also helps to produce multiple ratoon crops after the harvest. There is a dearth of in-depth knowledge on SBR system architecture and its functional role in modern day commercial hybrids. A comprehensive phenotypic, anatomical and whole transcriptome profiling, conducted between the commercial sugarcane hybrids and a wild germplasm Erianthus, found a developmental delay in both initiation and establishment of the SBR in commercial hybrid compared to Erianthus. The SBR system in Erianthus proved to be an extensive drought-adaptive root system architecture that significantly contributes to drought tolerance. On the other hand, SBRs in the commercial hybrids showed an irreversible collapse and damage of the root cells under drought stress. The outcomes from the comparative analysis of the transcriptome data showed a significant upregulation of the genes that regulate important stress signalling pathways viz., sugar, calcium, hormone signalling and phenylpropanoid biosynthesis in the SBRs of Erianthus. It was found that through these key signalling pathways, Erianthus SBRs triggered the downstream signalling cascade to impart physiological responses like osmoprotection, modification of the cell walls, detoxification of reactive oxygen species, expression of drought responsive transcription factors, maintenance of cell stability and lateral root development. The current study forms a basis for further exploration of the Shoot Borne Root system as a valuable breeding target to develop drought tolerant sugarcane genotypes.


Assuntos
Saccharum , Saccharum/genética , Secas , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Adaptação Fisiológica/genética , Estresse Fisiológico/genética
2.
PLoS One ; 16(7): e0254526, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34264991

RESUMO

With an objective of mapping novel low soil P (Phosphorus) tolerance loci in the non-Pup1 type donor rice line, Wazuhophek, we screened a recombinant inbred line (RIL) mapping population consisting of 330 lines derived from the cross Wazuhophek x Improved Samba Mahsuri (which is highly sensitive to low soil P) in a plot with low soil P for tolerance associated traits. Molecular mapping with SSR markers revealed a total of 16 QTLs (seven major and nine minor QTLs), which are associated with low soil P tolerance related traits. Interestingly, a QTL hotspot, harbouring 10 out of 16 QTLs were identified on the short arm of chromosome 8 (flanked by the makers RM22554 and RM80005). Five major QTLs explaining phenotypic variance to an extent of 15.28%, 17.25%, 21.84%, 20.23%, and 18.50%, associated with the traits, plant height, shoot length, the number of productive tillers, panicle length and yield, respectively, were located in the hotspot. Two major QTLs located on chromosome 1, associated with the traits, total biomass and root to shoot ratio, explaining 15.44% and 15.44% phenotypic variance, respectively were also identified. Complex epistatic interactions were observed among the traits, grain yield per plant, days to 50% flowering, dry shoot weight, and P content of the seed. In-silico analysis of genomic regions flanking the major QTLs revealed the presence of key putative candidate genes, possibly associated with tolerance.


Assuntos
Locos de Características Quantitativas , Mapeamento Cromossômico , Endogamia , Oryza , Fenótipo , Solo
3.
Sci Rep ; 11(1): 24514, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34972826

RESUMO

Erianthus arundinaceus [Retzius] Jeswiet, a wild relative of sugarcane has a high biomass production potential and a reservoir of many genes for superior agronomic traits and tolerance to biotic and abiotic stresses. A comparative physiological, anatomical and root transcriptome analysis were carried out to identify the salt-responsive genes and metabolic pathways associated with salt-tolerant E. arundinaceus genotype IND99-907 and salinity-sensitive sugarcane genotype Co 97010. IND99-907 recorded growth of young leaves, higher proline content, higher relative water content, intact root anatomical structures and lower Na+/K+, Ca2+/K+ and Mg2+/K+ ratio as compared to the sugarcane genotype Co 97010. We have generated four de novo transcriptome assemblies between stressed and control root samples of IND99-907 and Co 97010. A total of 649 and 501 differentially expressed genes (FDR<0.01) were identified from the stressed and control libraries of IND99-907 and Co 97010 respectively. Genes and pathways related to early stress-responsive signal transduction, hormone signalling, cytoskeleton organization, cellular membrane stabilization, plasma membrane-bound calcium and proton transport, sodium extrusion, secondary metabolite biosynthesis, cellular transporters related to plasma membrane-bound trafficking, nucleobase transporter, clathrin-mediated endocytosis were highly enriched in IND99-907. Whereas in Co 97010, genes related to late stress-responsive signal transduction, electron transport system, senescence, protein degradation and programmed cell death, transport-related genes associated with cellular respiration and mitochondrial respiratory chain, vesicular trafficking, nitrate transporter and fewer secondary metabolite biosynthetic genes were highly enriched. A total of 27 pathways, 24 biological processes, three molecular functions and one cellular component were significantly enriched (FDR≤ 0.05) in IND99-907 as compared to 20 pathways, two biological processes without any significant molecular function and cellular components in Co 97010, indicates the unique and distinct expression pattern of genes and metabolic pathways in both genotypes. The genomic resources developed from this study is useful for sugarcane crop improvement through development of genic SSR markers and genetic engineering approaches.


Assuntos
Metabolismo Energético/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Saccharum/genética , Estresse Salino , Tolerância ao Sal/genética , Transcriptoma , Biologia Computacional/métodos , Curadoria de Dados , Especificidade de Órgãos/genética , Fenótipo , Fenômenos Fisiológicos Vegetais , Saccharum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA