RESUMO
BACKGROUND: Female infants with congenital heart disease (CHD) face significantly higher postoperative mortality rates after adjusting for cardiac complexity. Sex differences in metabolic adaptation to cardiac stressors may be an early contributor to cardiac dysfunction. In adult diseases, hypoxic/ischemic cardiomyocytes undergo a cardioprotective metabolic shift from oxidative phosphorylation to glycolysis which appears to be regulated in a sexually dimorphic manner. We hypothesize sex differences in cardiac metabolism are present in cyanotic CHD and detectable as early as the infant period. METHODS: RNA sequencing was performed on blood samples (cyanotic CHD cases, n = 11; controls, n = 11) and analyzed using gene set enrichment analysis (GSEA). Global plasma metabolite profiling (UPLC-MS/MS) was performed using a larger representative cohort (cyanotic CHD, n = 27; non-cyanotic CHD, n = 11; unaffected controls, n = 12). RESULTS: Hallmark gene sets in glycolysis, fatty acid metabolism, and oxidative phosphorylation were significantly enriched in cyanotic CHD females compared to male counterparts, which was consistent with metabolomic differences between sexes. Minimal sex differences in metabolic pathways were observed in normoxic patients (both controls and non-cyanotic CHD cases). CONCLUSION: These observations suggest underlying differences in metabolic adaptation to chronic hypoxia between males and females with cyanotic CHD. IMPACT: Children with cyanotic CHD exhibit sex differences in utilization of glycolysis vs. fatty acid oxidation pathways to meet the high-energy demands of the heart in the neonatal period. Transcriptomic and metabolomic results suggest that under hypoxic conditions, males and females undergo metabolic shifts that are sexually dimorphic. These sex differences were not observed in neonates in normoxic conditions (i.e., non-cyanotic CHD and unaffected controls). The involved metabolic pathways are similar to those observed in advanced heart failure, suggesting metabolic adaptations beginning in the neonatal period may contribute to sex differences in infant survival.
Assuntos
Adaptação Fisiológica , Cardiopatias Congênitas , Humanos , Feminino , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/genética , Masculino , Lactente , Glicólise , Recém-Nascido , Cianose/sangue , Cianose/metabolismo , Caracteres Sexuais , Fatores Sexuais , Fosforilação Oxidativa , Estudos de Casos e Controles , MetabolômicaRESUMO
CONTEXT: Metformin is the first-line drug for treating diabetes but has a high failure rate. OBJECTIVE: To identify demographic and clinical factors available in the electronic health record (EHR) that predict metformin failure. METHODS: A cohort of patients with at least 1 abnormal diabetes screening test that initiated metformin was identified at 3 sites (Arizona, Mississippi, and Minnesota). We identified 22 047 metformin initiators (48% female, mean age of 57 ± 14 years) including 2141 African Americans, 440 Asians, 962 Other/Multiracial, 1539 Hispanics, and 16 764 non-Hispanic White people. We defined metformin failure as either the lack of a target glycated hemoglobin (HbA1c) (<7%) within 18 months of index or the start of dual therapy. We used tree-based extreme gradient boosting (XGBoost) models to assess overall risk prediction performance and relative contribution of individual factors when using EHR data for risk of metformin failure. RESULTS: In this large diverse population, we observed a high rate of metformin failure (43%). The XGBoost model that included baseline HbA1c, age, sex, and race/ethnicity corresponded to high discrimination performance (C-index of 0.731; 95% CI 0.722, 0.740) for risk of metformin failure. Baseline HbA1c corresponded to the largest feature performance with higher levels associated with metformin failure. The addition of other clinical factors improved model performance (0.745; 95% CI 0.737, 0.754, P < .0001). CONCLUSION: Baseline HbA1c was the strongest predictor of metformin failure and additional factors substantially improved performance suggesting that routinely available clinical data could be used to identify patients at high risk of metformin failure who might benefit from closer monitoring and earlier treatment intensification.
Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Metformina/uso terapêutico , Hipoglicemiantes/uso terapêutico , Registros Eletrônicos de Saúde , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Hemoglobinas Glicadas , Reposicionamento de Medicamentos , Estudos RetrospectivosRESUMO
Emerging evidence suggests that there is a reduction in overall cortical excitatory to inhibitory balance in major depressive disorder (MDD), which afflicts â¼14%-20% of individuals. Reduced pyramidal cell arborization occurs with stress and MDD, and may diminish excitatory neurotransmission. Enhanced deposition of perineuronal net (PNN) components also occurs with stress. Since parvalbumin-expressing interneurons are the predominant cell population that is enveloped by PNNs, which enhance their ability to release GABA, excess PNN deposition likely increases pyramidal cell inhibition. In the present study, we investigate the potential for matrix metalloprotease-9 (MMP-9), an endopeptidase secreted in response to neuronal activity, to contribute to the antidepressant efficacy of the serotonin/norepinephrine reuptake inhibitor venlafaxine in male mice. Chronic venlafaxine increases MMP-9 levels in murine cortex, and increases both pyramidal cell arborization and PSD-95 expression in the cortex of WT but not MMP-9-null mice. We have previously shown that venlafaxine reduces PNN deposition and increases the power of ex vivo γ oscillations in conventionally housed mice. γ power is increased with pyramidal cell disinhibition and with remission from MDD. Herein we observe that PNN expression is increased in a corticosterone-induced stress model of disease and reduced by venlafaxine. Compared with mice that receive concurrent venlafaxine, corticosterone-treated mice also display reduced ex vivo γ power and impaired working memory. Autopsy-derived PFC samples show elevated MMP-9 levels in antidepressant-treated MDD patients compared with controls. These preclinical and postmortem findings highlight a link between extracellular matrix regulation and MDD.SIGNIFICANCE STATEMENT Reduced excitatory neurotransmission occurs with major depressive disorder, and may be normalized by antidepressant treatment. Underlying molecular mechanisms are, however, not well understood. Herein we investigate a potential role for an extracellular protease, released from neurons and known to play a role in learning and memory, in antidepressant-associated increases in excitatory transmission. Our data suggest that this protease, matrix metalloprotease-9, increases branching of excitatory neurons and concomitantly attenuates the perineuronal net to potentially reduce inhibitory input to these neurons. Matrix metalloprotease-9 may thus enhance overall excitatory/inhibitory balance and neuronal population dynamics, which are important to mood and memory.
Assuntos
Transtorno Depressivo Maior/tratamento farmacológico , Ritmo Gama , Metaloproteinase 9 da Matriz/metabolismo , Inibição Neural , Inibidores da Recaptação de Serotonina e Norepinefrina/farmacologia , Estresse Psicológico/complicações , Cloridrato de Venlafaxina/farmacologia , Adulto , Idoso , Animais , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Transtorno Depressivo Maior/etiologia , Feminino , Humanos , Masculino , Metaloproteinase 9 da Matriz/genética , Memória de Curto Prazo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Células Piramidais/metabolismo , Células Piramidais/patologia , Inibidores da Recaptação de Serotonina e Norepinefrina/uso terapêutico , Cloridrato de Venlafaxina/uso terapêuticoRESUMO
BACKGROUND: Psychosis is common in bipolar disorder (BD) and is related to more severe cognitive impairments. Since the molecular mechanism of BD psychosis is elusive, we conducted this study to explore the proteomic differences associated with BD psychosis in the dorsolateral prefrontal cortex (DLPFC; BA9). METHODS: Postmortem DLPFC gray matter tissues from five pairs of age-matched male BD subjects with and without psychosis history were used. Tissue proteomes were identified and quantified by label-free liquid chromatography tandem mass spectrometry and then compared between groups. Statistical significance was set at q < 0.40 and Log2 fold change (Log2FC) ≥ |1|. Protein groups with differential expression between groups at p < 0.05 were subjected to pathway analysis. RESULTS: Eleven protein groups differed significantly between groups, including the reduction of tenascin C (q = 0.005, Log2FC = -1.78), the elevations of synaptoporin (q = 0.235, Log2FC = 1.17) and brain-specific angiogenesis inhibitor 1-associated protein 3 (q = 0.241, Log2FC = 2.10) in BD with psychosis. The between-group differences of these proteins were confirmed by Western blots. The top enriched pathways (p < 0.05 with ≥ 3 hits) were the outgrowth of neurons, neuronal cell proliferation, growth of neurites, and outgrowth of neurites, which were all predicted to be upregulated in BD with psychosis. LIMITATIONS: Small sample size and uncertain relationships of the observed proteomic differences with illness stage and acute psychosis. CONCLUSIONS: These results suggested BD with psychosis history may be associated with abnormalities in neurodevelopment, neuroplasticity, neurotransmission, and neuromodulation in the DLPFC.
Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Substância Cinzenta , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal , ProteômicaRESUMO
Dorsolateral prefrontal cortex (DLPFC) and temporal pole (TP) are brain regions that display abnormalities in bipolar disorder (BD) patients. DNA methylation - an epigenetic mechanism both heritable and sensitive to the environment - may be involved in the pathophysiology of BD. To study BD-associated DNA methylomic differences in these brain regions, we extracted genomic DNA from the postmortem tissues of Brodmann Area (BA) 9 (DLPFC) and BA38 (TP) gray matter from 20 BD, ten major depression (MDD), and ten control age-and-sex-matched subjects. Genome-wide methylation levels were measured using the 850â¯K Illumina MethylationEPIC BeadChip. We detected striking differences between cortical regions, with greater numbers of between-brain-region differentially methylated positions (DMPs; i.e., CpG sites) in all groups, most pronounced in the BD group, and with substantial overlap across groups. The genes of DMPs common to both BD and MDD (hypothetically associated with their common features such as depression) and those distinct to BD (hypothetically associated with BD-specific features such as mania) were enriched in pathways involved in neurodevelopment including axon guidance. Pathways enriched only in the BD-MDD shared list pointed to GABAergic dysregulation, while those enriched in the BD-only list suggested glutamatergic dysregulation and greater impact on synaptogenesis and synaptic plasticity. We further detected group-specific between-brain-region gene expression differences in ODC1, CALY, GALNT2, and GABRD, which contained significant between-brain-region DMPs. In each brain region, no significant DMPs or differentially methylated regions (DMRs) were found between diagnostic groups. In summary, the methylation differences between DLPFC and TP may provide molecular targets for further investigations of genetic and environmental vulnerabilities associated with both unique and common features of various mood disorders and suggest directions of future development of individualized treatment strategies.
Assuntos
Transtorno Bipolar/metabolismo , Metilação de DNA/fisiologia , Transtorno Depressivo Maior/metabolismo , Expressão Gênica/fisiologia , Genoma/fisiologia , Córtex Pré-Frontal/metabolismo , Lobo Temporal/metabolismo , Adulto , Idoso , Autopsia , Ilhas de CpG , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
The serotonin-1A (5-HT1A) receptor is a key regulator of serotonergic activity and is implicated in mood and emotion. However, its post-transcriptional regulation has never been studied in humans. In the present study, we show that the "intronless" human 5-HT1A gene (HTR1A) is alternatively spliced in its 3'-UTR, yielding two novel splice variants. These variants lack a â¼1.6 kb intron, which contains an microRNA-135 (miR135) target site. Unlike the human HTR1A, the mouse HTR1A lacks the splice donor/accepter sites. Thus, in the mouse HTR1A, splicing was not detected. The two spliced mRNAs are extremely stable, are resistant to miR135-induced downregulation, and have greater translational output than the unspliced variant. Moreover, alternative HTR1A RNA splicing is oppositely regulated by the splice factors PTBP1 and nSR100, which inhibit or enhance its splicing, respectively. In postmortem human brain tissue from both sexes, HTR1A mRNA splicing was prevalent and region-specific. Unspliced HTR1A was expressed more strongly in the hippocampus and midbrain versus the prefrontal cortex (PFC), and correlated with reduced levels of nSR100. Importantly, HTR1A RNA splicing and nSR100 levels were reduced in the PFC of individuals with major depression compared with controls. Our unexpected findings uncover a novel mechanism to regulate HTR1A gene expression through alternative splicing of microRNA sites. Altered levels of splice factors could contribute to changes in regional and depression-related gene expression through alternative splicing.SIGNIFICANCE STATEMENT Alternative splicing, which is prevalent in brain tissue, increases gene diversity. The serotonin-1A receptor gene (HTR1A) is a regulator of serotonin, which is implicated in mood and emotion. Here we show that human HTR1A RNA is alternately spliced. Splicing removes a microRNA site to generate ultrastable RNA and increase HTR1A expression. This splicing varies in different brain regions and is reduced in major depression. We also identify specific splice factors for HTR1A RNA, showing they are also reduced in depression. Thus, we describe a novel mechanism to regulate gene expression through splicing. Altered levels of splice factors could contribute to depression by changing gene expression.
Assuntos
Processamento Alternativo , Transtorno Depressivo Maior/metabolismo , Hipocampo/metabolismo , Mesencéfalo/metabolismo , Estabilidade de RNA/fisiologia , Receptor 5-HT1A de Serotonina/metabolismo , Adulto , Transtorno Depressivo Maior/genética , Feminino , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Receptor 5-HT1A de Serotonina/genéticaRESUMO
Major Depressive Disorder (MDD) is a common psychiatric disorder for which available medications are often not effective. The high prevalence of MDD and modest response to existing therapies compels efforts to better understand and treat the disorder. Decreased hippocampal volume with increasing duration of depression suggests altered gene expression or even a decrease in neurogenesis. Tissue punches from the dentate gyrus were collected postmortem from 23 subjects with MDD and 23 psychiatrically-normal control subjects. Total RNA was isolated and whole transcriptome paired-end RNA-sequencing was performed using an Illumina NextSeq 500. For each sample, raw RNA-seq reads were aligned to the Ensembl GRCh38 human reference genome. Analysis revealed 30 genes differentially expressed in MDD compared to controls (FDR<0.05). Down-regulated genes included several with inflammatory function (ISG15, IFI44L, IFI6, NR4A1/Nur-77) and GABBR1 while up-regulated genes included several with cytokine function (CCL2/MCP-1), inhibitors of angiogenesis (ADM, ADAMTS9), and the KANSL1 gene, a histone acetyltransferase. Similar analyses of specific subsets of MDD subjects (suicide vs. non-suicide, single vs. multiple episodes) yielded similar, though not identical, results. Enrichment analysis identified an over-representation of inflammatory and neurogenesis-related (ERK/MAPK) signaling pathways significantly altered in the hippocampal dentate gyrus in MDD. Together, these data implicate neuro-inflammation as playing a crucial role in MDD. These findings support continued efforts to identify adjunctive approaches towards the treatment of MDD with drugs including anti-inflammatory and neuroprotective properties.
Assuntos
Giro Denteado/metabolismo , Transtorno Depressivo Maior/metabolismo , Expressão Gênica , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Transcriptoma , Adulto JovemRESUMO
Studies of major depressive disorder (MDD) in postmortem brain tissue report enhanced binding to inhibitory serotonin-1A autoreceptors in midbrain dorsal raphe and reductions in length of axons expressing the serotonin transporter (SERT) in dorsolateral prefrontal cortex. The length density of axons expressing SERT in the orbitofrontal cortex (OFC) was determined in 18 subjects with MDD and 17 age-matched control subjects. A monoclonal antibody was used to immunohistochemically label the SERT in fixed sections of OFC. The 3-dimensional length density of SERT-immunoreactive (ir) axons in layer VI of OFC was estimated. The age of subjects with MDD was negatively correlated with SERT axon length (r=-0.77, p<0.0005). The significant effect of age persisted when removing four depressed subjects with an antidepressant medication present at the time of death, or when removing nine depressed subjects that had a recent prescription for an antidepressant medication. Neither gender, tissue pH, postmortem interval, 5-HTTLPR genotype, time in fixative, nor death by suicide had a significant effect on axon length. The age-related decrease in SERT-ir axon length in MDD may reflect pathology of ascending axons passing through deep white matter hyperintensities. Greater length of axons expressing SERT in younger subjects with MDD may result in a significant deficit in serotonin availability in OFC.
Assuntos
Axônios/metabolismo , Axônios/patologia , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/patologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
OBJECTIVES: Neuroimaging studies have revealed lithium-related increases in the volume of gray matter in the prefrontal cortex (PFC) and hippocampus. Postmortem human studies have reported alterations in neuronal and glial cell density and size in the PFC of lithium-treated subjects. Rodents treated with lithium exhibit cell proliferation in the dentate gyrus (DG) of the hippocampus. However, it is not known whether hippocampal and PFC volume are also increased in these animals or whether cell number in the PFC is altered. METHODS: Using stereological methods, this study estimated the total numbers of neurons and glia, and the packing density of astrocytes in the DG and PFC of normal adult mice treated with lithium, and evaluated the total volume of these regions and the entire neocortex. RESULTS: Lithium treatment increased the total numbers of neurons and glia in the DG (by 25% and 21%, respectively) and the density of astrocytes but did not alter total numbers in the PFC. However, the volumes of the hippocampus and its subfields, the PFC and its subareas, and the entire neocortex were not altered by lithium. CONCLUSIONS: Both neuronal and glial cells accounted for lithium-induced cell proliferation in the DG. That the numbers of neurons and glia were unchanged in the PFC is consistent with the view that this region is not a neurogenic zone. Further studies are required to clarify the impact of lithium treatment on the PFC under pathological conditions and to investigate the dissociation between increased cell proliferation and unchanged volume in the hippocampus.
Assuntos
Astrócitos/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Compostos de Lítio/farmacologia , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Transtorno Bipolar/patologia , Contagem de Células , Giro Denteado/citologia , Giro Denteado/patologia , Hipocampo/citologia , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/patologiaRESUMO
Functional imaging studies consistently report abnormal amygdala activity in major depressive disorder (MDD). Neuroanatomical correlates are less clear: imaging studies have produced mixed results on amygdala volume, and postmortem neuroanatomic studies have only examined cell densities in portions of the amygdala or its subregions in MDD. Here, we present a stereological analysis of the volume of, and the total number of, neurons, glia, and neurovascular (pericyte and endothelial) cells in the basolateral amygdala in MDD. Postmortem tissues from 13 subjects with MDD and 10 controls were examined. Sections (~15/subject) taken throughout the rostral-caudal extent of the basolateral amygdala (BLA) were stained for Nissl substance and utilized for stereological estimation of volume and cell numbers. Results indicate that depressed subjects had a larger lateral nucleus than controls and a greater number of total BLA neurovascular cells than controls. There were no differences in the number or density of neurons or glia between depressed and control subjects. These findings present a more detailed picture of BLA cellular anatomy in depression than has previously been available. Further studies are needed to determine whether the greater number of neurovascular cells in depressed subjects may be related to increased amygdala activity in depression.
Assuntos
Complexo Nuclear Basolateral da Amígdala/patologia , Transtorno Depressivo Maior/patologia , Adolescente , Adulto , Idoso , Contagem de Células , Células Endoteliais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuroglia/patologia , Neurônios/patologia , Pericitos/patologia , Adulto JovemRESUMO
White matter disturbance in the ventral prefrontal cortex (vPFC) in major depressive disorder (MDD) has been noted with diffusion tensor imaging (DTI). However, the cellular and molecular pathology of prefrontal white matter in MDD and potential influence of antidepressant medications is not fully understood. Oligodendrocyte morphometry and myelin-related mRNA and protein expression was examined in the white matter of the vPFC in MDD. Sections of deep and gyral white matter from the vPFC were collected from 20 subjects with MDD and 16 control subjects. Density and size of CNPase-immunoreactive (-IR) oligodendrocytes were estimated using 3-dimensional cell counting. While neither density nor soma size of oligodendrocytes was significantly affected in deep white matter, soma size was significantly decreased in the gyral white matter in MDD. In rhesus monkeys treated chronically with fluoxetine there was no significant effect on oligodendrocyte morphometry. Using quantitative RT-PCR to measure oligodendrocyte-related mRNA for CNPase, PLP1, MBP, MOG, MOBP, Olig1 and Olig2, in MDD there was a significantly reduced expression of PLP1 mRNA (which positively correlated with smaller sizes) and increased expression of mRNA for CNPase, OLIG1 and MOG. The expression of CNPase protein was significantly decreased in MDD. Altered expression of four myelin genes and CNPase protein suggests a mechanism for the degeneration of cortical axons and dysfunctional maturation of oligodendrocytes in MDD. The change in oligodendrocyte morphology in gyral white matter may parallel altered axonal integrity as revealed by DTI.
Assuntos
Transtorno Depressivo Maior/patologia , Proteínas da Mielina/genética , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Córtex Pré-Frontal/patologia , RNA Mensageiro/metabolismo , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transtorno Depressivo Maior/genética , Imagem de Tensor de Difusão , Feminino , Humanos , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Córtex Pré-Frontal/metabolismo , Adulto JovemRESUMO
Males have higher prevalence of hypertension and renal injury than females, which may be attributed in part to androgen-mediated effects on renal hemodynamics. Tubuloglomerular feedback (TGF) is an important mechanism in control of renal microcirculation. The present study examines the role of testosterone in the regulation of TGF responses. TGF was measured by micropuncture (change of stop-flow pressure, ΔPsf) in castrated Sprague-Dawley rats. The addition of testosterone (10(-7) mol/l) into the lumen increased the ΔPsf from 10.1 ± 1.2 to 12.2 ± 1.2 mmHg. To determine whether androgen receptors (AR) are involved, mRNA of AR was measured in the macula dense cells isolated by laser capture microdissection from kidneys, and a macula densa-like cell line (MMDD1). AR mRNA was expressed in the macula densa of rats and in MMDD1 cells. We next examined the effects of the AR blocker, flutamide (10(-5) mol/l) on the TGF response. The addition of flutamide blocked the effects of testosterone on TGF. The addition of Tempol (10(-4) mol/l) or polyethylene glycol-superoxide dismutase (100 U/ml) to scavenge superoxide blocked the effect of testosterone to augment TGF. We then applied apocynin to inhibit NAD(P)H oxidase and oxypurinol to inhibit xanthine oxidase and found the testosterone-induced augmentation of TGF was blocked. In additional experiments in MMDD1 cells, we found that testosterone increased O2(-) generation. Apocynin or oxypurinol blocked the testosterone-induced increases of O2(-), while blockade of COX-2 with NS-398 had no effect. These findings suggest that testosterone enhances TGF response by stimulating O2(-) production in macula densa via an AR-dependent pathway.
Assuntos
Retroalimentação Fisiológica/efeitos dos fármacos , Glomérulos Renais/efeitos dos fármacos , Túbulos Renais/efeitos dos fármacos , Superóxidos/metabolismo , Testosterona/farmacologia , Antagonistas de Androgênios/farmacologia , Animais , Linhagem Celular , Óxidos N-Cíclicos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Flutamida/farmacologia , Sequestradores de Radicais Livres/farmacologia , Masculino , NADPH Oxidases/metabolismo , Nitrobenzenos/farmacologia , RNA/biossíntese , RNA/genética , Ratos , Ratos Sprague-Dawley , Receptores Androgênicos/efeitos dos fármacos , Marcadores de Spin , Sulfonamidas/farmacologia , Superóxido Dismutase/farmacologia , Xantina Oxidase/metabolismoRESUMO
Neuroimaging consistently reveals smaller hippocampal volume in recurrent or chronic major depressive disorder (MDD). The underlying cellular correlates of the smaller volume are not clearly known. Postmortem tissues from 17 pairs of depressed and control subjects were obtained at autopsy, and informant-based retrospective psychiatric assessment was performed. Formalin-fixed left temporal lobes were sectioned (40 µm), stained for Nissl substance, and every 60th section selected throughout the entire hippocampus. Total volume of the hippocampal formation was calculated, and total numbers of pyramidal neurons (in hippocampal fields CA1, CA2/3, hilus), dentate gyrus (DG) granule cells, and glial cells were estimated stereologically. While hippocampal volume in all MDD subjects was not significantly smaller versus control subjects, in recurrent/chronic MDD, total volume decreased with duration of depressive illness (r = -0.696, p < 0.026). There was no significant difference between MDD and controls in total number or density of pyramidal neurons/granule cells or glial cells in CA1, CA2/3, hilus, or DG. However, CA1 pyramidal neuron density increased with duration of illness in recurrent/chronic MDD (r = 0.840, p < 0.002). Granule cell (r = 0.971, p < 0.002) and glial cell numbers (r = 0.980, p < 0.001) increased with age in those taking antidepressant medication (n = 6). Increasing DG granule cell and glial cell numbers with age in antidepressant-treated subjects may reflect proliferative effects of antidepressant medications. Decreasing total volume and increasing CA1 pyramidal neuron density with duration of illness in recurrent/chronic MDD lends support to the neuropil hypothesis of MDD.
Assuntos
Transtorno Depressivo Maior/patologia , Hipocampo/patologia , Neurônios/patologia , Contagem de Células , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estatísticas não Paramétricas , Técnicas EstereotáxicasRESUMO
A-to-I RNA editing is a post-transcriptional modification of single nucleotides in RNA by adenosine deamination, which thereby diversifies the gene products encoded in the genome. Thousands of potential RNA editing sites have been identified by recent studies (e.g. see Li et al, Science 2009); however, only a handful of these sites have been independently confirmed. Here, we systematically and quantitatively examined 109 putative coding region A-to-I RNA editing sites in three sets of normal human brain samples by ultra-high-throughput sequencing (uHTS). Forty of 109 putative sites, including 25 previously confirmed sites, were validated as truly edited in our brain samples, suggesting an overestimation of A-to-I RNA editing in these putative sites by Li et al (2009). To evaluate RNA editing in human disease, we analyzed 29 of the confirmed sites in subjects with major depressive disorder and schizophrenia using uHTS. In striking contrast to many prior studies, we did not find significant alterations in the frequency of RNA editing at any of the editing sites in samples from these patients, including within the 5HT(2C) serotonin receptor (HTR2C). Our results indicate that uHTS is a fast, quantitative and high-throughput method to assess RNA editing in human physiology and disease and that many prior studies of RNA editing may overestimate both the extent and disease-related variability of RNA editing at the sites we examined in the human brain.
Assuntos
Encéfalo/metabolismo , Transtorno Depressivo Maior/genética , Fases de Leitura Aberta/genética , Edição de RNA/genética , Esquizofrenia/genética , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
BACKGROUND: Imaging studies report that hippocampal volume is decreased in major depressive disorder (MDD). A cellular basis for reduced hippocampal volume in MDD has not been identified. METHODS: Sections of right hippocampus were collected in 19 subjects with MDD and 21 normal control subjects. The density of pyramidal neurons, dentate granule cell neurons, glia, and the size of the neuronal somal area were measured in systematic, randomly placed three-dimensional optical disector counting boxes. RESULTS: In MDD, cryostat-cut hippocampal sections shrink in depth a significant 18% greater amount than in control subjects. The density of granule cells and glia in the dentate gyrus and pyramidal neurons and glia in all cornv ammonis (CA)/hippocampal subfields is significantly increased by 30%-35% in MDD. The average soma size of pyramidal neurons is significantly decreased in MDD. CONCLUSION: In MDD, the packing density of glia, pyramidal neurons, and granule cell neurons is significantly increased in all hippocampal subfields and the dentate gyrus, and pyramidal neuron soma size is significantly decreased as well. It is suggested that a significant reduction in neuropil in MDD may account for decreased hippocampal volume detected by neuroimaging. In addition, differential shrinkage of frozen sections of the hippocampus suggests differential water content in hippocampus in MDD.